IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3321-d186122.html
   My bibliography  Save this article

A Novel Approach Based on Crow Search Algorithm for Solving Reactive Power Dispatch Problem

Author

Listed:
  • Asma Meddeb

    (Laboratory of Technologies of Information, Communication and Electrical Engineering (LaTICE), National Superior School of Engineers of Tunis (ENSIT), University of Tunis, Tunis 1002, Tunisia)

  • Nesrine Amor

    (Laboratory of Technologies of Information, Communication and Electrical Engineering (LaTICE), National Superior School of Engineers of Tunis (ENSIT), University of Tunis, Tunis 1002, Tunisia)

  • Mohamed Abbes

    (Laboratory of Technologies of Information, Communication and Electrical Engineering (LaTICE), National Superior School of Engineers of Tunis (ENSIT), University of Tunis, Tunis 1002, Tunisia)

  • Souad Chebbi

    (Laboratory of Technologies of Information, Communication and Electrical Engineering (LaTICE), National Superior School of Engineers of Tunis (ENSIT), University of Tunis, Tunis 1002, Tunisia)

Abstract

This paper presents a novel meta-heuristic approach based on the crow search algorithm (CSA) for solving the optimal reactive power dispatch (ORPD) problem. The ORPD is formulated as a nonlinear optimization problem designed to minimize power losses while satisfying the required constraints. The CSA is a recent efficient approach that depends on the intelligent behavior of crows. Nowadays, it has been used to solve many complex engineering optimization problems where it has proven its power and effectiveness. Motivated by the high ability in solving complex optimization problems and faster convergence of CSA, this paper proposes a novel approach to solve the ORPD problem. Furthermore, the settings of control variables such as generator terminal voltage, tap changer positions, and capacitor banks are determined to achieve the minimum total power loss while satisfying a set of nonlinear constraints. The accuracy and the performance of the proposed algorithm were performed and compared to other meta-heuristic algorithms reported in the literature. Several tests are applied on two standard test systems, including IEEE 14-bus and IEEE 30-bus as well as on the large-scale Tunisian 86-bus system. In addition, a sensitivity analysis has been performed to valid the performance of the CSA in solving the ORPD problem. We demonstrate that the proposed CSA provides a supremacy results and statistically significant in solving ORPD problems (for IEEE-14 bus p < 0.0006 , for IEEE-30 bus p < 0.006 , and for Tunisian 86-bus p < 0.0000001 ).

Suggested Citation

  • Asma Meddeb & Nesrine Amor & Mohamed Abbes & Souad Chebbi, 2018. "A Novel Approach Based on Crow Search Algorithm for Solving Reactive Power Dispatch Problem," Energies, MDPI, vol. 11(12), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3321-:d:186122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahir Sahli & Abdellatif Hamouda & Abdelghani Bekrar & Damien Trentesaux, 2018. "Reactive Power Dispatch Optimization with Voltage Profile Improvement Using an Efficient Hybrid Algorithm †," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Primitivo Díaz & Marco Pérez-Cisneros & Erik Cuevas & Omar Avalos & Jorge Gálvez & Salvador Hinojosa & Daniel Zaldivar, 2018. "An Improved Crow Search Algorithm Applied to Energy Problems," Energies, MDPI, vol. 11(3), pages 1-22, March.
    3. Walter M. Villa-Acevedo & Jesús M. López-Lezama & Jaime A. Valencia-Velásquez, 2018. "A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem," Energies, MDPI, vol. 11(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali S. Alghamdi, 2022. "A New Self-Adaptive Teaching–Learning-Based Optimization with Different Distributions for Optimal Reactive Power Control in Power Networks," Energies, MDPI, vol. 15(8), pages 1-24, April.
    2. Ghaffari, Abolfazl & Askarzadeh, Alireza & Fadaeinedjad, Roohollah, 2022. "Optimal allocation of energy storage systems, wind turbines and photovoltaic systems in distribution network considering flicker mitigation," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2019. "Optimal Capacitor Bank Allocation in Electricity Distribution Networks Using Metaheuristic Algorithms," Energies, MDPI, vol. 12(22), pages 1-36, November.
    2. Sulaiman Z. Almutairi & Emad A. Mohamed & Fayez F. M. El-Sousy, 2023. "A Novel Adaptive Manta-Ray Foraging Optimization for Stochastic ORPD Considering Uncertainties of Wind Power and Load Demand," Mathematics, MDPI, vol. 11(11), pages 1-35, June.
    3. Mohamed Ebeed & Ayman Alhejji & Salah Kamel & Francisco Jurado, 2020. "Solving the Optimal Reactive Power Dispatch Using Marine Predators Algorithm Considering the Uncertainties in Load and Wind-Solar Generation Systems," Energies, MDPI, vol. 13(17), pages 1-19, August.
    4. Samson Ademola Adegoke & Yanxia Sun, 2023. "Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight," Energies, MDPI, vol. 16(3), pages 1-14, January.
    5. Shahbaa I. Khaleel, 2023. "Building a Tool for Optimal Test Cases Selection using Artificial Intelligence Techniques," Technium, Technium Science, vol. 8(1), pages 1-11.
    6. Peng Cheng & Zhiyu Xu & Ruiye Li & Chao Shi, 2022. "A Hybrid Taguchi Particle Swarm Optimization Algorithm for Reactive Power Optimization of Deep-Water Semi-Submersible Platforms with New Energy Sources," Energies, MDPI, vol. 15(13), pages 1-16, June.
    7. Martín M. Sánchez-Mora & Walter M. Villa-Acevedo & Jesús M. López-Lezama, 2023. "Multi-Area and Multi-Period Optimal Reactive Power Dispatch in Electric Power Systems," Energies, MDPI, vol. 16(17), pages 1-24, September.
    8. Shahbaa I. Khaleel, 2023. "Constructing a Tool for Software Regression Testing Based on Crow Search Method," Technium, Technium Science, vol. 8(1), pages 60-71.
    9. Salah K. ElSayed & Ehab E. Elattar, 2021. "Slime Mold Algorithm for Optimal Reactive Power Dispatch Combining with Renewable Energy Sources," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    10. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    11. Mini Vishnu & Sunil Kumar T. K., 2020. "An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization," Energies, MDPI, vol. 13(11), pages 1-21, June.
    12. Jahedul Islam & Md Shokor A. Rahaman & Pandian M. Vasant & Berihun Mamo Negash & Ahshanul Hoqe & Hitmi Khalifa Alhitmi & Junzo Watada, 2021. "A Modified Niching Crow Search Approach to Well Placement Optimization," Energies, MDPI, vol. 14(4), pages 1-33, February.
    13. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
    14. Park, Sung-Won & Son, Sung-Yong, 2020. "Interaction-based virtual power plant operation methodology for distribution system operator’s voltage management," Applied Energy, Elsevier, vol. 271(C).
    15. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Finding Solutions for Optimal Reactive Power Dispatch Problem by a Novel Improved Antlion Optimization Algorithm," Energies, MDPI, vol. 12(15), pages 1-31, August.
    16. S. N. V. S. K. Chaitanya & R. Ashok Bakkiyaraj & B. Venkateswara Rao, 2023. "Multi objective optimal reactive power dispatch for enrichment of power system behavior using modified ant lion optimizer," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 133-142, March.
    17. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    18. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    19. Elena Niculina Dragoi & Vlad Dafinescu, 2021. "Review of Metaheuristics Inspired from the Animal Kingdom," Mathematics, MDPI, vol. 9(18), pages 1-52, September.
    20. Lenin Kanagasabai, 2022. "Buoyancy based optimization algorithm for real power loss diminution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2442-2457, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3321-:d:186122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.