IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2586-d785428.html
   My bibliography  Save this article

Improvement and Validation of the System Analysis Model and Code for Heat-Pipe-Cooled Microreactor

Author

Listed:
  • Li Ge

    (School of Nuclear Science and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China)

  • Huaqi Li

    (School of Nuclear Science and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China
    Northwest Institute of Nuclear Technology, 28 Pingyu Road, Xi’an 710024, China)

  • Xiaoyan Tian

    (Northwest Institute of Nuclear Technology, 28 Pingyu Road, Xi’an 710024, China)

  • Zeyu Ouyang

    (School of Nuclear Science and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China)

  • Xiaoya Kang

    (Northwest Institute of Nuclear Technology, 28 Pingyu Road, Xi’an 710024, China)

  • Da Li

    (Northwest Institute of Nuclear Technology, 28 Pingyu Road, Xi’an 710024, China)

  • Jianqiang Shan

    (School of Nuclear Science and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China)

  • Xinbiao Jiang

    (Northwest Institute of Nuclear Technology, 28 Pingyu Road, Xi’an 710024, China)

Abstract

Heat-pipe-cooled microreactors (HPMR) use a passive high-temperature alkali metal heat pipe to directly transfer the heat of solid core to the hot end of the intermediate heat exchanger or thermoelectric conversion device, thus avoiding a single point failure. To analyze and evaluate the transient safety characteristics of an HPMR system under accident conditions, such as heat pipe failure in the core or a loss of system heat sink and other accidents, a previously developed model for transient analysis of a heat-pipe-cooled space nuclear reactor power system (HPSR) was improved and validated in this study. The models improved mainly comprise: (1) An entire 2-D solid-core heat transfer model is established to analyze the accident conditions of core heat pipe failure and system heat sink loss. In this model, radial and axial Fourier heat conduction equations are used to divide the core into r - θ direction control volumes. The physical parameters of the material in the control volume are calculated according to the volume-weighted average. (2) By coupling the heat transfer limit model and the two-dimensional thermal resistance network model, the transient model of a heat pipe for HPMR system analysis is improved. (3) Conversion system models are established to simulate the system characteristics of the advanced HPMR concept, such as thermoelectric conversion, Stirling conversion, and the open Brayton conversion analysis model. Based on the improved models, the HPMR system analysis program TAPIRSD was developed, which was verified by experimental data of the separated conversion components and the ground nuclear test device KRUSTY. The maximum deviation of the power output predicted by the energy conversion model is less than 8%. The accident conditions of the KRUSTY tests, such as load change, core heat pipe failure, and heat sink loss accident, were studied by using TAPIRSD. The results show that the simulation results of the TAPIRSD code agree well with the experimental data of the KRUSTY prototype reactor. The maximum error between the TAPIRSD code prediction and the measured value of the core temperature under accident conditions is less than 10 K, and the maximum deviation is less than 2%. The results show that the developed code can predict the transient response process of the HPMR system well. At the same time, the accuracy and reliability of the improved model are proved. The TAPIRSD is suitable for system transient analysis of different types of HPMRs and provides an optional tool for the system safety characteristics analysis of HPMR.

Suggested Citation

  • Li Ge & Huaqi Li & Xiaoyan Tian & Zeyu Ouyang & Xiaoya Kang & Da Li & Jianqiang Shan & Xinbiao Jiang, 2022. "Improvement and Validation of the System Analysis Model and Code for Heat-Pipe-Cooled Microreactor," Energies, MDPI, vol. 15(7), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2586-:d:785428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huaqi Li & Xiaoyan Tian & Li Ge & Xiaoya Kang & Lei Zhu & Sen Chen & Lixin Chen & Xinbiao Jiang & Jianqiang Shan, 2022. "Development of a Performance Analysis Model for Free-Piston Stirling Power Convertor in Space Nuclear Reactor Power Systems," Energies, MDPI, vol. 15(3), pages 1-21, January.
    2. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2022. "Isothermal Performance of Heat Pipes: A Review," Energies, MDPI, vol. 15(6), pages 1-16, March.
    3. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2021. "Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis," Energies, MDPI, vol. 14(22), pages 1-15, November.
    4. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    5. Dianle Wang & Yun Guo, 2021. "Preliminary Design of a Heat Pipe-Cooled Blanket for CFETR," Energies, MDPI, vol. 14(21), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biao Zhou & Jun Sun & Yuliang Sun, 2023. "Investigation on Laminar Flow and Heat Transfer of Helium–Xenon Gas Mixtures with Variable Properties," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Chih-Yung Tseng & Ho-Meng Wu & Shwin-Chung Wong & Kai-Shing Yang & Chi-Chuan Wang, 2018. "A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications," Energies, MDPI, vol. 11(12), pages 1-12, December.
    4. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    5. Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.
    6. Ng, Edmund Chong Jie & Kueh, Tze Cheng & Wang, Xin & Soh, Ai Kah & Hung, Yew Mun, 2021. "Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes," Energy, Elsevier, vol. 214(C).
    7. Mohammad Hossein Ahmadi & Mohammad Dehghani Madvar & Milad Sadeghzadeh & Mohammad Hossein Rezaei & Manuel Herrera & Shahaboddin Shamshirband, 2019. "Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models," Energies, MDPI, vol. 12(10), pages 1-20, May.
    8. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Aref, Latif & Fallahzadeh, Rasoul & Shabanian, Seyed Reza & Hosseinzadeh, Mojtaba, 2021. "A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector," Energy, Elsevier, vol. 230(C).
    10. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    11. Chin-Hsiang Cheng & Surender Dhanasekaran, 2022. "Design of a Slot-Spaced Permanent Magnet Linear Alternator Based on Numerical Analysis," Energies, MDPI, vol. 15(13), pages 1-22, June.
    12. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2022. "Isothermal Performance of Heat Pipes: A Review," Energies, MDPI, vol. 15(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2586-:d:785428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.