IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2546-d783901.html
   My bibliography  Save this article

Forecasting the Total South African Unplanned Capability Loss Factor Using an Ensemble of Deep Learning Techniques

Author

Listed:
  • Sibonelo Motepe

    (Department of Electrical and Electronic Engineering Technology, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa)

  • Ali N. Hasan

    (Department of Electrical Engineering, Faculty of Engineering Science and Technology, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates)

  • Thokozani Shongwe

    (Department of Electrical and Electronic Engineering Technology, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa)

Abstract

Unplanned power plant failures have been seen to be a major cause of power shortages, and thus customer power cuts, in the South African power grid. These failures are measured as the unplanned capability loss factor (UCLF). The study of South Africa’s UCLF is almost non-existent. Parameters that affect the future UCLF are, thus, still not well understood, making it challenging to forecast when power shortages may be experienced. This paper presents a novel study of South African UCLF forecasting using state-of-the-art deep learning techniques. The study further introduces a novel deep learning ensemble South African UCLF forecasting system. The performance of three of the best recent forecasting techniques, namely, long short-term memory recurrent neural network (LSTM-RNN), deep belief network (DBN), and optimally pruned extreme learning machines (OP-ELM), as well as their aggregated ensembles, are investigated for South African UCLF forecasting. The impact of three key parameters (installed capacity, demand, and planned capability loss factor) on the future UCLF is investigated. The results showed that the exclusion of installed capacity in the LSTM-RNN, DBN, OP-ELM, and ensemble models doubled the UCLF forecasting error. It was also found that an ensemble model of two LSTM-RNN models achieved the lowest errors with a symmetric mean absolute percentage error (sMAPE) of 6.43%, mean absolute error (MAE) of 7.36%, and root-mean-square error (RMSE) of 9.21%. LSTM-RNN also achieved the lowest errors amongst the individual models.

Suggested Citation

  • Sibonelo Motepe & Ali N. Hasan & Thokozani Shongwe, 2022. "Forecasting the Total South African Unplanned Capability Loss Factor Using an Ensemble of Deep Learning Techniques," Energies, MDPI, vol. 15(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2546-:d:783901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    3. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Muhammad Ahmar & Fahad Ali & Yuexiang Jiang & Mamdooh Alwetaishi & Sherif S. M. Ghoneim, 2022. "Households’ Energy Choices in Rural Pakistan," Energies, MDPI, vol. 15(9), pages 1-23, April.
    5. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    6. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    7. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
    8. Jun Dong & Xihao Dou & Aruhan Bao & Yaoyu Zhang & Dongran Liu, 2022. "Day-Ahead Spot Market Price Forecast Based on a Hybrid Extreme Learning Machine Technique: A Case Study in China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    9. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
    10. Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
    11. Hasnain Iftikhar & Nadeela Bibi & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Multiple Novel Decomposition Techniques for Time Series Forecasting: Application to Monthly Forecasting of Electricity Consumption in Pakistan," Energies, MDPI, vol. 16(6), pages 1-17, March.
    12. Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
    13. Chatum Sankalpa & Somsak Kittipiyakul & Seksan Laitrakun, 2022. "Forecasting Short-Term Electricity Load Using Validated Ensemble Learning," Energies, MDPI, vol. 15(22), pages 1-30, November.
    14. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    15. Ali K k & Erg n Y kseltan & Mustafa Hekimo lu & Esra Agca Aktunc & Ahmet Y cekaya & Ay e Bilge, 2022. "Forecasting Hourly Electricity Demand Under COVID-19 Restrictions," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 73-85.
    16. Yi Yang & Zhihao Shang & Yao Chen & Yanhua Chen, 2020. "Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting," Energies, MDPI, vol. 13(3), pages 1-19, January.
    17. Antonio Gabaldón & María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez, 2022. "Guest Editorial: Special Issue on Short-Term Load Forecasting 2019, Results and Future Perspectives," Energies, MDPI, vol. 15(24), pages 1-5, December.
    18. Roozbeh Sadeghian Broujeny & Safa Ben Ayed & Mouadh Matalah, 2023. "Energy Consumption Forecasting in a University Office by Artificial Intelligence Techniques: An Analysis of the Exogenous Data Effect on the Modeling," Energies, MDPI, vol. 16(10), pages 1-21, May.
    19. Yunsun Kim & Sahm Kim, 2021. "Electricity Load and Internet Traffic Forecasting Using Vector Autoregressive Models," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    20. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2546-:d:783901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.