IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2524-d782854.html
   My bibliography  Save this article

The Influence of Biochar Augmentation and Digestion Conditions on the Anaerobic Digestion of Water Hyacinth

Author

Listed:
  • Jessica Quintana-Najera

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • A. John Blacker

    (Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK)

  • Louise A. Fletcher

    (School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Douglas G. Bray

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Andrew B. Ross

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

Abstract

The augmentation of biochar (BC) during anaerobic digestion (AD) has been identified as a potential strategy for improving the AD of complex feedstocks. This study evaluates the influence of oak wood biochar 450 °C and fermentation conditions during the AD of the invasive aquatic plant, water hyacinth (WH). Factorial 2 2 design of experiments (DOE) allowed the evaluation of the effect of the crucial processing conditions, inoculum-to-substrate ratio (ISR) and biochar load. Further optimisation was performed to identify the best processing conditions for the AD of WH, at an ideal ISR of 1. The contour plots suggested that methane yield is favoured at biochar loads of ≤0.5%, whereas the production rate is favoured by increasing biochar loads. However, biochar addition offered no further improvement or significant effect on the digestion of WH. The subsequent AD of WH samples collected from different locations in India and Uganda exhibited variable biochemical methane potential (BMP) yields. BC addition had little effect on BMP performance, and in some cases, it even reduced the BMP. This study concludes that the amendment potential of biochar is influenced by digestion conditions and the substrate, particularly when working with complex substrates.

Suggested Citation

  • Jessica Quintana-Najera & A. John Blacker & Louise A. Fletcher & Douglas G. Bray & Andrew B. Ross, 2022. "The Influence of Biochar Augmentation and Digestion Conditions on the Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 15(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2524-:d:782854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chodkowska-Miszczuk, J. & Martinát, S. & van der Horst, D., 2021. "Changes in feedstocks of rural anaerobic digestion plants: External drivers towards a circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Schoene, Robin P. & Snyder, Seth W., 2015. "Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal," Applied Energy, Elsevier, vol. 158(C), pages 300-309.
    3. Okoro- Shekwaga, Cynthia Kusin & Turnell Suruagy, Mariana Vieira & Ross, Andrew & Camargo- Valero, Miller Alonso, 2020. "Particle size, inoculum-to-substrate ratio and nutrient media effects on biomethane yield from food waste," Renewable Energy, Elsevier, vol. 151(C), pages 311-321.
    4. Okoro-Shekwaga, Cynthia Kusin & Ross, Andrew Barry & Camargo-Valero, Miller Alonso, 2019. "Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis," Applied Energy, Elsevier, vol. 254(C).
    5. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    6. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    7. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Aragón-Briceño, C.I. & Grasham, O. & Ross, A.B. & Dupont, V. & Camargo-Valero, M.A., 2020. "Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics," Renewable Energy, Elsevier, vol. 157(C), pages 959-973.
    9. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    10. De la Rubia, M.A. & Villamil, J.A. & Rodriguez, J.J. & Mohedano, A.F., 2018. "Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge," Renewable Energy, Elsevier, vol. 127(C), pages 697-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jessica Quintana-Najera & A. John Blacker & Louise A. Fletcher & Andrew B. Ross, 2023. "Understanding the Influence of Biochar Augmentation in Anaerobic Digestion by Principal Component Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    2. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Jessica Quintana-Najera & A. John Blacker & Louise A. Fletcher & Andrew B. Ross, 2023. "Understanding the Influence of Biochar Augmentation in Anaerobic Digestion by Principal Component Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    5. Wu, Benteng & Lin, Richen & Kang, Xihui & Deng, Chen & Dobson, Alan D.W. & Murphy, Jerry D., 2021. "Improved robustness of ex-situ biological methanation for electro-fuel production through the addition of graphene," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
    7. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Roberta Ferrentino & Fabio Merzari & Luca Fiori & Gianni Andreottola, 2020. "Coupling Hydrothermal Carbonization with Anaerobic Digestion for Sewage Sludge Treatment: Influence of HTC Liquor and Hydrochar on Biomethane Production," Energies, MDPI, vol. 13(23), pages 1-19, November.
    10. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    11. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    12. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    13. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    14. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    15. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    16. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    17. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    18. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    19. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Mehedi Hasan & Soumik Chakma & Xunjia Liang & Shrikanta Sutradhar & Janusz Kozinski & Kang Kang, 2024. "Engineered Biochar for Metal Recycling and Repurposed Applications," Energies, MDPI, vol. 17(18), pages 1-35, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2524-:d:782854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.