IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2485-d781480.html
   My bibliography  Save this article

A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters

Author

Listed:
  • Hui Zhang

    (Marine Engineering Equipment College, Zhejiang Ocean University, Zhoushan 316022, China)

  • Wanan Sheng

    (Renewable Energy and Fluid Machinery Group, Engineering Department, Lancaster University, Lancaster LA1 4YW, UK)

  • Zhimin Zha

    (Marine Engineering Equipment College, Zhejiang Ocean University, Zhoushan 316022, China)

  • George Aggidis

    (Renewable Energy and Fluid Machinery Group, Engineering Department, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

Biomimetics and creatures could contribute to novel design inspiration for wave energy converters, as we have seen numerous examples in applications of other branches of engineering. However, the issue of how to obtain valuable biological entities, or bionic design cases, that could produce inspiration for novel designs, may be challenging for the designers of wave energy converters (WECs). This study carries out preliminary research on the acquisition of biological entities for designers, to obtain innovative bio-inspired ideas for designing novel WECs. In the proposed method, the first step is to draw out engineering terminologies based on the function, structure, and energy extraction principles of existing WECs. Then, by applying WordNet, candidate biological terminologies can be obtained. Next, using AskNature, along with manual selection and filtering, biological terminologies can be acquired. The last step is to use the biological terminologies to establish the reference biological entities, and to use the information and knowledge of these entities in the design of an innovative WEC. Using the proposed methodology, a novel WEC was conceived and verified.

Suggested Citation

  • Hui Zhang & Wanan Sheng & Zhimin Zha & George Aggidis, 2022. "A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters," Energies, MDPI, vol. 15(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2485-:d:781480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, H. & Aggidis, G.A., 2018. "Nature rules hidden in the biomimetic wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 28-37.
    2. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing," Renewable Energy, Elsevier, vol. 53(C), pages 159-164.
    3. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    4. Sheng, Wanan, 2019. "Power performance of BBDB OWC wave energy converters," Renewable Energy, Elsevier, vol. 132(C), pages 709-722.
    5. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    2. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    3. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    4. Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
    5. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    6. Ferreira, D.N. & Gato, L.M.C. & Eça, L. & Henriques, J.C.C., 2020. "Aerodynamic analysis of a biradial turbine with movable guide-vanes: Incidence and slip effects on efficiency," Energy, Elsevier, vol. 200(C).
    7. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    8. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    9. Kostas Belibassakis & Alexandros Magkouris & Eugen Rusu, 2020. "A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry," Energies, MDPI, vol. 13(13), pages 1-24, July.
    10. Henriques, J.C.C. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Ceballos, S., 2016. "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 714-724.
    11. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    12. Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
    13. Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
    14. Falcão, António F.O. & Henriques, João C.C. & Gato, Luís M.C., 2018. "Self-rectifying air turbines for wave energy conversion: A comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1231-1241.
    15. Erlantz Otaola & Aitor J. Garrido & Jon Lekube & Izaskun Garrido, 2019. "A Comparative Analysis of Self-Rectifying Turbines for the Mutriku Oscillating Water Column Energy Plant," Complexity, Hindawi, vol. 2019, pages 1-14, January.
    16. Nazanin Ansarifard & Alan Fleming & Alan Henderson & S.S. Kianejad & Shuhong Chai, 2019. "Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters," Energies, MDPI, vol. 12(14), pages 1-22, July.
    17. Moisel, Christoph & Carolus, Thomas H., 2016. "A facility for testing the aerodynamic and acoustic performance of bidirectional air turbines for ocean wave energy conversion," Renewable Energy, Elsevier, vol. 86(C), pages 1340-1352.
    18. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2020. "Experimental study of a self-rectifying biradial air turbine with fixed guide-vanes arranged into two concentric annular rows," Energy, Elsevier, vol. 198(C).
    19. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    20. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2485-:d:781480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.