Latching control of a floating oscillating-water-column wave energy converter
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2015.12.065
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part II: Development of latching control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 935-944.
- Henriques, J.C.C. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Ceballos, S., 2016. "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 714-724.
- Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
- Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing," Renewable Energy, Elsevier, vol. 53(C), pages 159-164.
- Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion," Renewable Energy, Elsevier, vol. 44(C), pages 328-339.
- Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part I: Optimal and control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 922-934.
- Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
- Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
- Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
- Henriques, J.C.C. & Portillo, J.C.C. & Sheng, W. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 571-589.
- Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.
- Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
- Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
- Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
- Ferreira, D.N. & Gato, L.M.C. & Eça, L. & Henriques, J.C.C., 2020. "Aerodynamic analysis of a biradial turbine with movable guide-vanes: Incidence and slip effects on efficiency," Energy, Elsevier, vol. 200(C).
- Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
- Kostas Belibassakis & Alexandros Magkouris & Eugen Rusu, 2020. "A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry," Energies, MDPI, vol. 13(13), pages 1-24, July.
- Henriques, J.C.C. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Ceballos, S., 2016. "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 714-724.
- Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
- Haraguchi, Ruriko & Asai, Takehiko, 2020. "Enhanced power absorption of a point absorber wave energy converter using a tuned inertial mass," Energy, Elsevier, vol. 202(C).
- Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
- Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
- Falcão, António F.O. & Henriques, João C.C. & Gato, Luís M.C., 2018. "Self-rectifying air turbines for wave energy conversion: A comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1231-1241.
- Nazanin Ansarifard & Alan Fleming & Alan Henderson & S.S. Kianejad & Shuhong Chai, 2019. "Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters," Energies, MDPI, vol. 12(14), pages 1-22, July.
- Portillo, J.C.C. & Collins, K.M. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Howey, B.D. & Hann, M.R. & Greaves, D.M. & Falcão, A.F.O., 2020. "Wave energy converter physical model design and testing: The case of floating oscillating-water-columns," Applied Energy, Elsevier, vol. 278(C).
- Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2020. "Experimental study of a self-rectifying biradial air turbine with fixed guide-vanes arranged into two concentric annular rows," Energy, Elsevier, vol. 198(C).
More about this item
Keywords
Wave energy; Oscillating-water-column; Latching control; Receding horizon; OWC spar-buoy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:90:y:2016:i:c:p:229-241. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.