IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6396904.html
   My bibliography  Save this article

A Comparative Analysis of Self-Rectifying Turbines for the Mutriku Oscillating Water Column Energy Plant

Author

Listed:
  • Erlantz Otaola
  • Aitor J. Garrido
  • Jon Lekube
  • Izaskun Garrido

Abstract

Oscillating Water Column (OWC) based devices are arising as one of the most promising technologies for wave energy harnessing. However, the most widely used turbine comprising its power take-off (PTO) module, the Wells turbine, presents some drawbacks that require special attention. Notwithstanding different control strategies are being followed to overcome these issues; the use of other self-rectifying turbines could directly achieve this goal at the expense of some extra construction, maintenance, and operation costs. However, these newly developed turbines in turn show diverse behaviours that should be compared for each case. This paper aims to analyse this comparison for the Mutriku wave energy power plant.

Suggested Citation

  • Erlantz Otaola & Aitor J. Garrido & Jon Lekube & Izaskun Garrido, 2019. "A Comparative Analysis of Self-Rectifying Turbines for the Mutriku Oscillating Water Column Energy Plant," Complexity, Hindawi, vol. 2019, pages 1-14, January.
  • Handle: RePEc:hin:complx:6396904
    DOI: 10.1155/2019/6396904
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6396904.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6396904.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6396904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
    2. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing," Renewable Energy, Elsevier, vol. 53(C), pages 159-164.
    3. El Marjani, A. & Castro Ruiz, F. & Rodriguez, M.A. & Parra Santos, M.T., 2008. "Numerical modelling in wave energy conversion systems," Energy, Elsevier, vol. 33(8), pages 1246-1253.
    4. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    5. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    6. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    7. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    2. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    3. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    4. Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
    5. Nazanin Ansarifard & Alan Fleming & Alan Henderson & S.S. Kianejad & Shuhong Chai, 2019. "Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters," Energies, MDPI, vol. 12(14), pages 1-22, July.
    6. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    7. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.
    8. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    9. Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
    10. Falcão, António F.O. & Henriques, João C.C. & Gato, Luís M.C., 2018. "Self-rectifying air turbines for wave energy conversion: A comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1231-1241.
    11. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2020. "Experimental study of a self-rectifying biradial air turbine with fixed guide-vanes arranged into two concentric annular rows," Energy, Elsevier, vol. 198(C).
    12. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    13. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
    14. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    15. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    16. Torres, Fernando R. & Teixeira, Paulo R.F. & Didier, Eric, 2018. "A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models," Renewable Energy, Elsevier, vol. 121(C), pages 9-18.
    17. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    18. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    19. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    20. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6396904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.