IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2262-d775223.html
   My bibliography  Save this article

Methane Concentration Prediction Method Based on Deep Learning and Classical Time Series Analysis

Author

Listed:
  • Xiangrui Meng

    (School of Economics and Management, Anhui University of Science & Technology, Huainan 232000, China
    State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232000, China)

  • Haoqian Chang

    (School of Economics and Management, Anhui University of Science & Technology, Huainan 232000, China)

  • Xiangqian Wang

    (School of Economics and Management, Anhui University of Science & Technology, Huainan 232000, China)

Abstract

Methane is one of the most dangerous gases encountered in the mining industry. During mining operations, methane can be broadly classified into three states: mining excavation, stoppage safety check, and abnormal methane concentration, which is usually a precursor to a gas accident, such as a coal and gas outburst. Consequently, it is vital to accurately predict methane concentrations. Herein, we apply three deep learning methods—a recurrent neural network (RNN), long short-term memory (LSTM), and a gated recurrent unit (GRU)—to the problem of methane concentration prediction and evaluate their efficacy. In addition, we propose a novel prediction method that combines classical time series analysis with these deep learning models. The results revealed that GRU has the least root mean square error (RMSE) loss of the three models. The RMSE loss can be further reduced by approximately 35% by using the proposed combined approach, and the models are also less likely to result in overfitting. Therefore, combining deep learning methods with classical time series analysis can provide accurate methane concentration prediction and improve mining safety.

Suggested Citation

  • Xiangrui Meng & Haoqian Chang & Xiangqian Wang, 2022. "Methane Concentration Prediction Method Based on Deep Learning and Classical Time Series Analysis," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2262-:d:775223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu Xiang & Qian Jian-sheng & Huang Cheng-hua & Zhang Li, 2014. "Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform and Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, July.
    2. Shuang Song & Shugang Li & Tianjun Zhang & Li Ma & Shaobo Pan & Lu Gao, 2021. "Research on a Multi-Parameter Fusion Prediction Model of Pressure Relief Gas Concentration Based on RNN," Energies, MDPI, vol. 14(5), pages 1-18, March.
    3. Tianjun Zhang & Shuang Song & Shugang Li & Li Ma & Shaobo Pan & Liyun Han, 2019. "Research on Gas Concentration Prediction Models Based on LSTM Multidimensional Time Series," Energies, MDPI, vol. 12(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.
    2. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Song & Shugang Li & Tianjun Zhang & Li Ma & Shaobo Pan & Lu Gao, 2021. "Research on a Multi-Parameter Fusion Prediction Model of Pressure Relief Gas Concentration Based on RNN," Energies, MDPI, vol. 14(5), pages 1-18, March.
    2. Xiangqian Wang & Ningke Xu & Xiangrui Meng & Haoqian Chang, 2022. "Prediction of Gas Concentration Based on LSTM-LightGBM Variable Weight Combination Model," Energies, MDPI, vol. 15(3), pages 1-17, January.
    3. Maksymilian Mądziel, 2023. "Future Cities Carbon Emission Models: Hybrid Vehicle Emission Modelling for Low-Emission Zones," Energies, MDPI, vol. 16(19), pages 1-16, October.
    4. Souradeep Chakraborty, 2019. "Capturing Financial markets to apply Deep Reinforcement Learning," Papers 1907.04373, arXiv.org, revised Dec 2019.
    5. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    6. Fei Qian & Li Chen & Jun Li & Chao Ding & Xianfu Chen & Jian Wang, 2019. "Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    7. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
    8. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2262-:d:775223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.