IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1384-d509579.html
   My bibliography  Save this article

Research on a Multi-Parameter Fusion Prediction Model of Pressure Relief Gas Concentration Based on RNN

Author

Listed:
  • Shuang Song

    (College of Energy, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Shugang Li

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Tianjun Zhang

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Li Ma

    (College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Shaobo Pan

    (College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Lu Gao

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

The effective prediction of gas concentration and the reasonable formulation of corresponding safety measures have important significance for improving the level of coal mine safety. To improve the accuracy of gas concentration prediction and enhance the applicability of the models, this paper starts with actual coal mine production monitoring data, improves the accuracy of gas concentration prediction through multi-parameter fusion prediction, and constructs a recurrent neural network (RNN)-based multi-parameter fusion prediction of coal face gas concentration. We determined the performance evaluation index of the model’s prediction method; used the grid search method to optimize the hyperparameters of the batch size; and used the number of neurons, the learning rate, the discard ratio, the network depth, and the early stopping method to prevent overfitting. The gas concentration prediction models—based on RNN and PSO-SVR and PSO-Adam-BP neural networks—were compared and analyzed experimentally with the mean absolute percentage error (MAPE) as the performance evaluation index. The result show that using the grid search method to adjust the batch size, the number of neurons, the learning rate, the discard ratio, and the network depth can effectively find the optimal hyperparameter combination. The training error can be reduced to 0.0195. Therefore, Adam’s optimized RNN gas concentration prediction model had higher accuracy and stability than the BP neural network and SVR. During training, the mean absolute error (MAE) could be reduced to 0.0573, and the root mean squared error (RMSE) could be reduced to 0.0167; however, the MAPE could be reduced to 0.3384% during prediction. The RNN gas concentration prediction model and parameter optimization method based on Adam optimization can effectively predict gas concentration. This method shows high accuracy in the prediction of gas concentration time series and can be used as a reference model for predicting mine gas concentration.

Suggested Citation

  • Shuang Song & Shugang Li & Tianjun Zhang & Li Ma & Shaobo Pan & Lu Gao, 2021. "Research on a Multi-Parameter Fusion Prediction Model of Pressure Relief Gas Concentration Based on RNN," Energies, MDPI, vol. 14(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1384-:d:509579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu Xiang & Qian Jian-sheng & Huang Cheng-hua & Zhang Li, 2014. "Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform and Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, July.
    2. Tianjun Zhang & Shuang Song & Shugang Li & Li Ma & Shaobo Pan & Liyun Han, 2019. "Research on Gas Concentration Prediction Models Based on LSTM Multidimensional Time Series," Energies, MDPI, vol. 12(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangqian Wang & Ningke Xu & Xiangrui Meng & Haoqian Chang, 2022. "Prediction of Gas Concentration Based on LSTM-LightGBM Variable Weight Combination Model," Energies, MDPI, vol. 15(3), pages 1-17, January.
    2. Xiangrui Meng & Haoqian Chang & Xiangqian Wang, 2022. "Methane Concentration Prediction Method Based on Deep Learning and Classical Time Series Analysis," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangrui Meng & Haoqian Chang & Xiangqian Wang, 2022. "Methane Concentration Prediction Method Based on Deep Learning and Classical Time Series Analysis," Energies, MDPI, vol. 15(6), pages 1-15, March.
    2. Maksymilian Mądziel, 2023. "Future Cities Carbon Emission Models: Hybrid Vehicle Emission Modelling for Low-Emission Zones," Energies, MDPI, vol. 16(19), pages 1-16, October.
    3. Souradeep Chakraborty, 2019. "Capturing Financial markets to apply Deep Reinforcement Learning," Papers 1907.04373, arXiv.org, revised Dec 2019.
    4. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    5. Fei Qian & Li Chen & Jun Li & Chao Ding & Xianfu Chen & Jian Wang, 2019. "Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    6. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
    7. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1384-:d:509579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.