IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2151-d771832.html
   My bibliography  Save this article

Abnormal Data Detection and Identification Method of Distribution Internet of Things Monitoring Terminal Based on Spatiotemporal Correlation

Author

Listed:
  • Nan Shao

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Yu Chen

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

Abstract

As an important part of the ubiquitous power Internet of Things, the distribution Internet of Things can further improve the automation and informatization level of the distribution network. The reliability of the measurement data of the low-voltage terminal unit, as the sensing unit of the sensing layer of the distribution Internet of Things, has a great impact on the fault processing and advanced applications of the distribution Internet of Things. The self-check and the equipment working status monitoring of the main station of the low-voltage terminal unit struggle to identify the abnormality of measurement data. Aiming at this problem, an abnormal data detection and identification recognition method of a distribution Internet of Things monitoring terminal is proposed on the basis of spatiotemporal correlation. First, using the temporal correlation of monitoring terminal data, the proposed composite temporal series similarity measurement criterion is used to calculate the distance matrix between data, and the abnormal data detection is realized via combination with the improved DBSCAN algorithm. Then, using the spatial correlation of the data of the terminal unit, the geometric features of the spatial cross-correlation coefficient of the terminal nodes are extracted as the input of the cascaded fuzzy logic system to identify the abnormal source. Lastly, the effectiveness of the method is verified by a practical example.

Suggested Citation

  • Nan Shao & Yu Chen, 2022. "Abnormal Data Detection and Identification Method of Distribution Internet of Things Monitoring Terminal Based on Spatiotemporal Correlation," Energies, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2151-:d:771832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eleonora Arena & Alessandro Corsini & Roberto Ferulano & Dario Alfio Iuvara & Eric Stefan Miele & Lorenzo Ricciardi Celsi & Nour Alhuda Sulieman & Massimo Villari, 2021. "Anomaly Detection in Photovoltaic Production Factories via Monte Carlo Pre-Processed Principal Component Analysis," Energies, MDPI, vol. 14(13), pages 1-16, July.
    2. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Xiaolu Li & Peng Zhang & Guangyu Zhu, 2019. "DBSCAN Clustering Algorithms for Non-Uniform Density Data and Its Application in Urban Rail Passenger Aggregation Distribution," Energies, MDPI, vol. 12(19), pages 1-22, September.
    4. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangyu Chen & Yijie Wu & Li Yang & Ke Xu & Gang Lin & Yangfei Zhang & Yuzhuo Zhang, 2022. "Ultra-Short-Term Load Dynamic Forecasting Method Considering Abnormal Data Reconstruction Based on Model Incremental Training," Energies, MDPI, vol. 15(19), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    2. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    3. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    4. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    5. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    6. Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    7. Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
    8. Herodotos Herodotou & Sheraz Aslam, 2022. "Data-Intensive Computing in Smart Microgrids: Volume II," Energies, MDPI, vol. 15(16), pages 1-2, August.
    9. Muhammed Cavus & Dilum Dissanayake & Margaret Bell, 2025. "Deep-Fuzzy Logic Control for Optimal Energy Management: A Predictive and Adaptive Framework for Grid-Connected Microgrids," Energies, MDPI, vol. 18(4), pages 1-25, February.
    10. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    11. Ullah, Asad & Zhang, Qingyu & Raza, Syed Ali & Ali, Sajid, 2021. "Renewable energy: Is it a global challenge or opportunity? Focusing on different income level countries through Panel Smooth Transition Regression Model," Renewable Energy, Elsevier, vol. 177(C), pages 689-699.
    12. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    13. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    14. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2024. "Real-time automatic control of multi-energy system for smart district community: A coupling ensemble prediction model and safe deep reinforcement learning," Energy, Elsevier, vol. 304(C).
    15. Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    16. Sajawal ur Rehman Khan & Israa Adil Hayder & Muhammad Asif Habib & Mudassar Ahmad & Syed Muhammad Mohsin & Farrukh Aslam Khan & Kainat Mustafa, 2022. "Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids," Energies, MDPI, vol. 16(1), pages 1-16, December.
    17. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    18. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Lee, Seonho & Kim, Jiwon & Byun, Jaewon & Joo, Junghee & Lee, Yoonjae & Kim, Taehyun & Hwangbo, Soonho & Han, Jeehoon & Kim, Sung-Kon & Lee, Jechan, 2023. "Environmentally-viable utilization of chicken litter as energy recovery and electrode production: A machine learning approach," Applied Energy, Elsevier, vol. 350(C).
    20. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2151-:d:771832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.