IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p995-d1594274.html
   My bibliography  Save this article

Deep-Fuzzy Logic Control for Optimal Energy Management: A Predictive and Adaptive Framework for Grid-Connected Microgrids

Author

Listed:
  • Muhammed Cavus

    (Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne NE1 8SA, UK)

  • Dilum Dissanayake

    (School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK)

  • Margaret Bell

    (School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK)

Abstract

This paper introduces a novel energy management framework, Deep-Fuzzy Logic Control (Deep-FLC), which combines predictive modelling using Long Short-Term Memory (LSTM) networks with adaptive fuzzy logic to optimise energy allocation, minimise grid dependency, and preserve battery health in grid-connected microgrid (MG) systems. Integrating LSTM-based predictions provides foresight into system parameters such as state of charge, load demand, and battery health, while fuzzy logic ensures real-time adaptive control. Results demonstrate that Deep-FLC achieves a 25.7% reduction in operational costs compared to the conventional system and a 17.5% saving cost over the Fuzzy Logic Control (FLC) system. Additionally, Deep-FLC delivers the highest battery efficiency of 61% and constraints depth of discharge to below 2% per time step, resulting in a reduction of the state of health degradation to less than 0.2% over 300 h. By combining predictive analytics with adaptive control, this study addresses the limitations of standalone approaches and establishes Deep-FLC as a robust, efficient, and sustainable energy management solution. Key novel contributions include the integration of advanced prediction mechanisms with fuzzy control and its application to battery-integrated grid-connected MG systems.

Suggested Citation

  • Muhammed Cavus & Dilum Dissanayake & Margaret Bell, 2025. "Deep-Fuzzy Logic Control for Optimal Energy Management: A Predictive and Adaptive Framework for Grid-Connected Microgrids," Energies, MDPI, vol. 18(4), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:995-:d:1594274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/995/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:995-:d:1594274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.