IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2062-d769187.html
   My bibliography  Save this article

Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria

Author

Listed:
  • Francisco Quinteros

    (Smart Electric Grids Research Group GIREI (Spanish Acronym), Salesian Polytechnic University, Quito 170702, Ecuador)

  • Diego Carrión

    (Smart Electric Grids Research Group GIREI (Spanish Acronym), Salesian Polytechnic University, Quito 170702, Ecuador)

  • Manuel Jaramillo

    (Smart Electric Grids Research Group GIREI (Spanish Acronym), Salesian Polytechnic University, Quito 170702, Ecuador)

Abstract

Electric power systems (EPS) are exposed to disconnections of their elements, such as transmission lines and generation units, due to meteorological factors or electrical failures. Thus, this research proposes a smart methodology for the re-entry of elements that have been disconnected from the EPS due to unforeseen events. This methodology is based on optimal AC power flows (OPF-AC) which allow verifying the state of variables such as voltage, angular deviation, and power (these variables are monitored in normal and fault conditions). The proposed study considers contingencies N-2, N-3, N-4, and N-5, for which the disconnection of transmission lines and generation units are carried out randomly. The analysis of the EPS after the disconnections of the elements is carried out by means of the contingency index, with which the impact that the disconnections of the elements have on the EPS is verified. In this way, the optimal route is generated to restore the elements that went out of operation, verifying that when the elements re-enter the acceptable limits, voltage and voltage angle are not exceeded. According to the results of the methodology used, it was found that NM contingencies can be applied in the proposed model, in addition to considering stability restrictions, modeled as restrictions on acceptable voltage limits, and a new restriction for the voltage angle between the differences of the bars.

Suggested Citation

  • Francisco Quinteros & Diego Carrión & Manuel Jaramillo, 2022. "Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria," Energies, MDPI, vol. 15(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2062-:d:769187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Jiang & Qiwei Chen, 2018. "An Optimal Source-Load Coordinated Restoration Method Considering Double Uncertainty," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
    3. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm," Energies, MDPI, vol. 12(22), pages 1-36, November.
    4. Ebrahim Rokrok & Miadreza Shafie-khah & Pierluigi Siano & João P. S. Catalão, 2017. "A Decentralized Multi-Agent-Based Approach for Low Voltage Microgrid Restoration," Energies, MDPI, vol. 10(10), pages 1-20, September.
    5. Diego Carrión & Edwin García & Manuel Jaramillo & Jorge W. González, 2021. "A Novel Methodology for Optimal SVC Location Considering N-1 Contingencies and Reactive Power Flows Reconfiguration," Energies, MDPI, vol. 14(20), pages 1-17, October.
    6. Paulo Murinelli Pesoti & Eliane Valença De Lorenci & Antonio Carlos Zambroni de Souza & Kwok Lun Lo & Benedito Isaias Lima Lopes, 2017. "Robustness Area Technique Developing Guidelines for Power System Restoration," Energies, MDPI, vol. 10(1), pages 1-16, January.
    7. Han Zhang & Gengfeng Li & Hanjie Yuan, 2018. "Collaborative Optimization of Post-Disaster Damage Repair and Power System Operation," Energies, MDPI, vol. 11(10), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaime Pilatásig & Diego Carrión & Manuel Jaramillo, 2022. "Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    2. Juan Toctaquiza & Diego Carrión & Manuel Jaramillo, 2023. "An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Karol Jakub Listewnik, 2022. "A Method for the Evaluation of Power-Generating Sets Based on the Assessment of Power Quality Parameters," Energies, MDPI, vol. 15(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Po-Chou Shih & Chui-Yu Chiu & Chi-Hsun Chou, 2019. "Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted Prisoners," Mathematics, MDPI, vol. 7(12), pages 1-25, December.
    2. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.
    3. Jing Wang & Longhua Mu & Fan Zhang & Xin Zhang, 2017. "A Parallel Restoration for Black Start of Microgrids Considering Characteristics of Distributed Generations," Energies, MDPI, vol. 11(1), pages 1-18, December.
    4. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    5. Jaime Pilatásig & Diego Carrión & Manuel Jaramillo, 2022. "Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    6. Manuel S. Alvarez-Alvarado & Johnny Rengifo & Rommel M. Gallegos-Núñez & José G. Rivera-Mora & Holguer H. Noriega & Washington Velasquez & Daniel L. Donaldson & Carlos D. Rodríguez-Gallegos, 2022. "Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation," Energies, MDPI, vol. 15(22), pages 1-12, November.
    7. Manuel Dario Jaramillo & Diego Francisco Carrión & Jorge Paul Muñoz, 2023. "A Novel Methodology for Strengthening Stability in Electrical Power Systems by Considering Fast Voltage Stability Index under N − 1 Scenarios," Energies, MDPI, vol. 16(8), pages 1-23, April.
    8. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    9. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    10. Junho Hong & Dmitry Ishchenko & Anil Kondabathini, 2021. "Implementation of Resilient Self-Healing Microgrids with IEC 61850-Based Communications," Energies, MDPI, vol. 14(3), pages 1-16, January.
    11. Juan Toctaquiza & Diego Carrión & Manuel Jaramillo, 2023. "An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks," Energies, MDPI, vol. 16(6), pages 1-17, March.
    12. Ping Jiang & Qiwei Chen, 2018. "An Optimal Source-Load Coordinated Restoration Method Considering Double Uncertainty," Energies, MDPI, vol. 11(3), pages 1-18, March.
    13. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    14. Jie Cai & Shuyu Guo & Shuang Liao & Xing Chen & Shihong Miao & Yaowang Li, 2020. "Optimization Model of Key Equipment Maintenance Scheduling for an AC/DC Hybrid Transmission Network Based on Mixed Integer Linear Programming," Energies, MDPI, vol. 13(4), pages 1-26, February.
    15. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    16. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
    17. Pedro Faria & Zita Vale, 2019. "A Demand Response Approach to Scheduling Constrained Load Shifting," Energies, MDPI, vol. 12(9), pages 1-16, May.
    18. João Abel Peças Lopes & André Guimarães Madureira & Manuel Matos & Ricardo Jorge Bessa & Vítor Monteiro & João Luiz Afonso & Sérgio F. Santos & João P. S. Catalão & Carlos Henggeler Antunes & Pedro Ma, 2020. "The future of power systems: Challenges, trends, and upcoming paradigms," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    19. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    20. Mi Dong & Li Li & Lina Wang & Dongran Song & Zhangjie Liu & Xiaoyu Tian & Zhengguo Li & Yinghua Wang, 2018. "A Distributed Secondary Control Algorithm for Automatic Generation Control Considering EDP and Automatic Voltage Control in an AC Microgrid," Energies, MDPI, vol. 11(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2062-:d:769187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.