IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1998-d767387.html
   My bibliography  Save this article

Green Solution for Insulation System of a Medium Frequency High Voltage Transformer for an Offshore Wind Farm

Author

Listed:
  • Mohammad Kharezy

    (RISE Research Institutes of Sweden, 50462 Borås, Sweden
    Department of Electrical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden)

  • Hassan Reza Mirzaei

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Torbjörn Thiringer

    (Department of Electrical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden)

  • Yuriy V. Serdyuk

    (Department of Electrical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden)

Abstract

High Voltage Direct Current (HVDC) transmission represents the most efficient way for transporting produced electrical energy from remotely located offshore wind farms to the shore. Such systems are implemented today using very expensive and large power transformers and converter stations placed on dedicated platforms. The present study aims at elaborating a compact solution for an energy collections system. The solution allows for a minimum of total transformer weight in the wind turbine nacelle reducing or even eliminating the need for a sea-based platform(s). The heart of the project is a Medium Frequency Transformer (MFT) that has a high DC voltage insulation towards ground. The transformer is employed in a DC/DC converter that delivers the energy into a serial array without additional conversion units. The insulation design methodology of an environmentally friendly HV insulation system for an MFT, based on pressboard and biodegradable oil, is introduced. The measurement method and results of the measurements of electrical conductivities of the transformer oil and Oil Impregnated Pressboard (OIP) are reported. The measurements show that the biodegradable ester oil/OIP conductivities are generally higher than the mineral oil/OIP conductivities. Numerical simulations reveal that the performance of the insulation system is slightly better when ester oil is used. Additionally, a lower temperature dependency for ester oil/OIP conductivities is observed, with the result that the transformer filled with ester oil is less sensitive to temperature variations.

Suggested Citation

  • Mohammad Kharezy & Hassan Reza Mirzaei & Torbjörn Thiringer & Yuriy V. Serdyuk, 2022. "Green Solution for Insulation System of a Medium Frequency High Voltage Transformer for an Offshore Wind Farm," Energies, MDPI, vol. 15(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1998-:d:767387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Rumpelt & Frank Jenau, 2017. "Oil Impregnated Pressboard Barrier Systems Based on Ester Fluids for an Application in HVDC Insulation Systems," Energies, MDPI, vol. 10(12), pages 1-10, December.
    2. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    2. Pawel Zukowski & Przemyslaw Rogalski & Vitalii Bondariev & Milan Sebok, 2022. "Diagnostics of High Water Content Paper-Oil Transformer Insulation Based on the Temperature and Frequency Dependencies of the Loss Tangent," Energies, MDPI, vol. 15(8), pages 1-16, April.
    3. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    4. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    5. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    6. Miloš Šárpataky & Juraj Kurimský & Michal Rajňák & Michal Krbal & Marek Adamčák, 2022. "Dielectric Performance of Natural- and Synthetic-Ester-Based Nanofluids with Fullerene Nanoparticles," Energies, MDPI, vol. 16(1), pages 1-15, December.
    7. Łukasz Nagi & Mateusz Bogacz, 2023. "Statistical Analysis of Breakdown Voltage of Insulating Liquid Dopped with Surfactants," Energies, MDPI, vol. 16(3), pages 1-23, January.
    8. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    9. Tomasz N. Kołtunowicz & Konrad Kierczynski & Pawel Okal & Aleksy Patryn & Miroslav Gutten, 2022. "Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard," Energies, MDPI, vol. 15(8), pages 1-14, April.
    10. Piotr Przybylek, 2022. "Application of Near-Infrared Spectroscopy to Measure the Water Content in Liquid Dielectrics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    11. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    12. Hubert Moranda & Jaroslaw Gielniak & Ireneusz Kownacki, 2021. "Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It," Energies, MDPI, vol. 14(7), pages 1-12, March.
    13. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Yehya S. Mohamed & Hassan Haes Alhelou & Pierluigi Siano, 2021. "Transformers Improvement and Environment Conservation by Using Synthetic Esters in Egypt," Energies, MDPI, vol. 14(7), pages 1-15, April.
    14. Belén García & Alfredo Ortiz & Carlos Renedo & Diego Fernando García & Andrés Montero, 2021. "Use Performance and Management of Biodegradable Fluids as Transformer Insulation," Energies, MDPI, vol. 14(19), pages 1-18, October.
    15. Pawel Rozga & Filip Stuchala & Tomasz Piotrowski & Abderrahmane Beroual, 2022. "Influence of Temperature on Lightning Performance of Mineral Oil," Energies, MDPI, vol. 15(3), pages 1-11, January.
    16. Inmaculada Fernández, 2022. "The Need for Experimental and Numerical Analyses of Thermal Ageing in Power Transformers," Energies, MDPI, vol. 15(17), pages 1-4, September.
    17. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.
    18. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1998-:d:767387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.