IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1584-d754864.html
   My bibliography  Save this article

Loss Estimation and Thermal Analysis of a Magnetic Levitation Reaction Flywheel with PMB and AMB for Satellite Application

Author

Listed:
  • Zan He

    (School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
    Ningbo Institute of Technology, Beihang University, Ningbo 315800, China)

  • Tong Wen

    (Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
    Research Institute of Frontier Science, Beihang University, Beijing 100191, China)

  • Xu Liu

    (Ningbo Institute of Technology, Beihang University, Ningbo 315800, China)

  • Yuchen Suo

    (Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China)

Abstract

The magnetic levitation reaction flywheel (MLRW) is a novel actuator of spacecraft attitude control because of its significant advantages, including lack of friction and active suppression of vibration. However, in a vacuum environment, the poor heat dissipation conditions make it more sensitive to various losses and rises in temperature. Therefore, increasing temperature is the key issue for components used in space. In this study, the losses of the three kinds of heat-generating areas in the MLRW, namely, the passive magnetic bearing (PMB), the active magnetic bearing (AMB) and brushless DC motor (BLDCM), were analyzed and calculated. Based on the electromagnetic field theory, the loss model of PMB was proposed. Based on the finite element method (FEM) and Bertotti model, the loss power of the AMB and the BLDCM was obtained. The calculated loss values were brought into the FEM to calculate the temperature field distribution of the MLRW system. Then, the key factors affecting the heat dissipation of the flywheel were obtained by combining thermal network analysis with the temperature field distribution. Finally, a prototype was fabricated. The maximum estimated and experimental temperatures were 34.8 °C and 36.8 °C, respectively, both at the BLDCM stator. The maximum error was 5.4%, which validates the calculated model.

Suggested Citation

  • Zan He & Tong Wen & Xu Liu & Yuchen Suo, 2022. "Loss Estimation and Thermal Analysis of a Magnetic Levitation Reaction Flywheel with PMB and AMB for Satellite Application," Energies, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1584-:d:754864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen Ji & Fei Ni & Dinggang Gao & Shihui Luo & Qichao Lv & Dongyuan Lv, 2021. "Electromagnetic Design of High-Power and High-Speed Permanent Magnet Synchronous Motor Considering Loss Characteristics," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Yanjun Yu & Weiyu Zhang & Yuxin Sun & Peifeng Xu, 2016. "Basic Characteristics and Design of a Novel Hybrid Magnetic Bearing for Wind Turbines," Energies, MDPI, vol. 9(11), pages 1-17, November.
    3. Weiyu Zhang & Huangqiu Zhu & Hengkun Yang & Tao Chen, 2017. "Experimental Analysis and Full Prediction Model of a 5-DOF Motorized Spindle," Energies, MDPI, vol. 10(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Ba & Zhenjie Gong & Youguang Guo & Chengning Zhang & Jianguo Zhu, 2022. "Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss," Energies, MDPI, vol. 15(6), pages 1-18, March.
    2. Qiang Wang & Rui Li & Ziliang Zhao & Kui Liang & Wei Xu & Pingping Zhao, 2023. "Temperature Field Analysis and Cooling Structure Optimization for Integrated Permanent Magnet In-Wheel Motor Based on Electromagnetic-Thermal Coupling," Energies, MDPI, vol. 16(3), pages 1-18, February.
    3. Zhengmeng Liu & Wenxuan Li & Guohai Liu, 2023. "A Novel Three-Layer Symmetry Winding Configuration for Five-Phase Motor," Energies, MDPI, vol. 16(2), pages 1-11, January.
    4. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    5. Lei Xu & Mingyao Lin & Xinghe Fu & Kai Liu & Baocheng Guo, 2017. "Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet," Energies, MDPI, vol. 10(4), pages 1-18, April.
    6. Wenich Vattanapuripakorn & Sathapon Sonsupap & Khomson Khannam & Natthakrit Bamrungwong & Prachakon Kaewkhiaw & Jiradanai Sarasamkan & Bopit Bubphachot, 2022. "Advanced Electric Battery Power Storage for Motors through the Use of Differential Gears and High Torque for Recirculating Power Generation," Clean Technol., MDPI, vol. 4(4), pages 1-14, October.
    7. Shuai Wang & Mingyao Lin & Keman Lin & Yong Kong, 2021. "Investigation of the Torque Production Mechanism of Dual-Stator Axial-Field Flux-Switching Permanent Magnet Motors," Energies, MDPI, vol. 14(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1584-:d:754864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.