IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5498-d628396.html
   My bibliography  Save this article

Investigation of the Torque Production Mechanism of Dual-Stator Axial-Field Flux-Switching Permanent Magnet Motors

Author

Listed:
  • Shuai Wang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Mingyao Lin

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Keman Lin

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Yong Kong

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

This paper studies the torque production mechanism of the dual-stator axial-field flux-switching permanent magnet (DSAFFSPM) machine. Due to the double-sided slotting design of such topology, more resultant air-gap working harmonics in the air-gap flux density are responsible for the torque production and the stator air-gap permeance is especially considered in the investigation. Based on the magnetic force (MMF)-permeance model, the composition and difference of the air-gap working harmonics are demonstrated. The DSAFFSPM machine torque contributions of the main working harmonics are analyzed theoretically and quantified by finite element analysis (FEA). The influence laws of the parameters on the working harmonics are shown and this effectively improves the motor operation performance. Finally, some experiments on the DSAFFSPM machine are carried out to validate the analytical and FEA results.

Suggested Citation

  • Shuai Wang & Mingyao Lin & Keman Lin & Yong Kong, 2021. "Investigation of the Torque Production Mechanism of Dual-Stator Axial-Field Flux-Switching Permanent Magnet Motors," Energies, MDPI, vol. 14(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5498-:d:628396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen Ji & Fei Ni & Dinggang Gao & Shihui Luo & Qichao Lv & Dongyuan Lv, 2021. "Electromagnetic Design of High-Power and High-Speed Permanent Magnet Synchronous Motor Considering Loss Characteristics," Energies, MDPI, vol. 14(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Ba & Zhenjie Gong & Youguang Guo & Chengning Zhang & Jianguo Zhu, 2022. "Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss," Energies, MDPI, vol. 15(6), pages 1-18, March.
    2. Qiang Wang & Rui Li & Ziliang Zhao & Kui Liang & Wei Xu & Pingping Zhao, 2023. "Temperature Field Analysis and Cooling Structure Optimization for Integrated Permanent Magnet In-Wheel Motor Based on Electromagnetic-Thermal Coupling," Energies, MDPI, vol. 16(3), pages 1-18, February.
    3. Zhengmeng Liu & Wenxuan Li & Guohai Liu, 2023. "A Novel Three-Layer Symmetry Winding Configuration for Five-Phase Motor," Energies, MDPI, vol. 16(2), pages 1-11, January.
    4. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    5. Wenich Vattanapuripakorn & Sathapon Sonsupap & Khomson Khannam & Natthakrit Bamrungwong & Prachakon Kaewkhiaw & Jiradanai Sarasamkan & Bopit Bubphachot, 2022. "Advanced Electric Battery Power Storage for Motors through the Use of Differential Gears and High Torque for Recirculating Power Generation," Clean Technol., MDPI, vol. 4(4), pages 1-14, October.
    6. Zan He & Tong Wen & Xu Liu & Yuchen Suo, 2022. "Loss Estimation and Thermal Analysis of a Magnetic Levitation Reaction Flywheel with PMB and AMB for Satellite Application," Energies, MDPI, vol. 15(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5498-:d:628396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.