IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp687-700.html
   My bibliography  Save this article

Evolution of transformer health index in the form of mathematical equation

Author

Listed:
  • Azmi, A.
  • Jasni, J.
  • Azis, N.
  • Kadir, M.Z.A. Ab.

Abstract

Energy is a basic necessity in every country. The worldwide demand for energy will rise due to the developments of power generation in industrial, service, and residential sectors. A healthy power system is therefore very important to guarantee continuous electricity supply to the end users and this can be achieved through asset management. A proper asset management will allow asset managers to conduct quality assessment of conditions and to develop future management strategies of the electrical assets such as transformers. The execution of transformer asset management involves an investigation of the transformer's condition by employing Transformer's Health Index (THI). Mathematical equation/algorithm or expert judgment has been investigated by many previous studies as one of the technique to determine health index (HI). Some of the established methods of HI determination such as scoring and ranking method, tier method, matrices and multi-feature assessment model have led to the different interpretations of the final condition of a transformer. This paper critically examines and explores the previous studies related to transformer health index by using mathematical equation/algorithm or expert judgment. The concept of HI and its formulation are presented in this study. Generally, there are three parts of HI formulation which are input, algorithm for HI and the output of HI. The application of HI is discussed in terms of the performance of in-service transformer. The limitations of the available methods are also discussed and future works to overcome the problems are suggested.

Suggested Citation

  • Azmi, A. & Jasni, J. & Azis, N. & Kadir, M.Z.A. Ab., 2017. "Evolution of transformer health index in the form of mathematical equation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 687-700.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:687-700
    DOI: 10.1016/j.rser.2017.03.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117304306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaikh, Faheemullah & Ji, Qiang & Fan, Ying, 2015. "The diagnosis of an electricity crisis and alternative energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1172-1185.
    2. Rauf, Omer & Wang, Shujie & Yuan, Peng & Tan, Junzhe, 2015. "An overview of energy status and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 892-931.
    3. Borunda, Mónica & Jaramillo, O.A. & Reyes, Alberto & Ibargüengoytia, Pablo H., 2016. "Bayesian networks in renewable energy systems: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 32-45.
    4. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Melnikova & Alexandr Nazarychev & Konstantin Suslov, 2022. "Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
    2. Raji Murugan & Ramasamy Raju, 2021. "Evaluation of in-service power transformer health condition for Inspection, Repair, and Replacement (IRR) maintenance planning in electric utilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 318-336, April.
    3. Bustamante, Sergio & Manana, Mario & Arroyo, Alberto & Laso, Alberto & Martinez, Raquel, 2024. "Evolution of graphical methods for the identification of insulation faults in oil-immersed power transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Muhammad Sharil Yahaya & Norhafiz Azis & Amran Mohd Selva & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Mohd Hendra Hairi & Young Zaidey Yang Ghazali & Mohd Aizam Talib, 2018. "Effect of Pre-Determined Maintenance Repair Rates on the Health Index State Distribution and Performance Condition Curve Based on the Markov Prediction Model for Sustainable Transformers Asset Managem," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    5. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    6. Alhaytham Alqudsi & Ayman El-Hag, 2019. "Application of Machine Learning in Transformer Health Index Prediction," Energies, MDPI, vol. 12(14), pages 1-13, July.
    7. David L. Alvarez & Diego F. Rodriguez & Alben Cardenas & F. Faria da Silva & Claus Leth Bak & Rodolfo García & Sergio Rivera, 2021. "Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework," Energies, MDPI, vol. 14(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    3. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    4. Ahmad, Hafsa & Jamil, Faisal, 2024. "Investigating power outages in Pakistan," Energy Policy, Elsevier, vol. 189(C).
    5. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    6. Aized, Tauseef & Shahid, Muhammad & Bhatti, Amanat Ali & Saleem, Muhammad & Anandarajah, Gabrial, 2018. "Energy security and renewable energy policy analysis of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 155-169.
    7. Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.
    8. Qazi, Usama & Jahanzaib, Mirza & Ahmad, Wasim & Hussain, Salman, 2017. "An institutional framework for the development of sustainable and competitive power market in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 83-95.
    9. Tahir, Z.R. & Asim, Muhammad, 2018. "Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2839-2861.
    10. Khan, Muhammad Arshad & Abbas, Faisal, 2016. "The dynamics of electricity demand in Pakistan: A panel cointegration analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1159-1178.
    11. Abbasi, Kashif & Jiao, Zhilun & Khan, Arman & Shahbaz, Muhammad, 2020. "Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis," MPRA Paper 101854, University Library of Munich, Germany, revised 13 Jul 2020.
    12. Ullah, Kafait & Raza, Muhammad Shabbar & Mirza, Faisal Mehmood, 2019. "Barriers to hydro-power resource utilization in Pakistan: A mixed approach," Energy Policy, Elsevier, vol. 132(C), pages 723-735.
    13. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    14. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    15. Papyrakis, Elissaios & Parcero, Osiris Jorge, 2022. "The psychology of mineral wealth: Empirical evidence from Kazakhstan," Resources Policy, Elsevier, vol. 77(C).
    16. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    17. Leezna Saleem & Imran Ahmad Siddiqui & Intikhab Ulfat, 2021. "The prioritization of renewable energy technologies in Pakistan: An urgent need," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 81-103.
    18. Sophia Akhtar & M Khurram Hashmi & Ishaq Ahmad & Rizwan Raza, 2018. "Advances and significance of solar reflectors in solar energy technology in Pakistan," Energy & Environment, , vol. 29(4), pages 435-455, June.
    19. Galiya Movkebayeva & Aliya Aktymbayeva & Yuliya Tyurina & Nurken Baikadamov & Kamar Beketova & Marija Troyanskaya & Sholpan Smagulova & Aizhan Imangaliyeva, 2020. "Energy Security and Sustainability in Eurasian Economic Union in the Terms of Economic Growth: The Case of Kazakhstan s Energy Sector up to 2040 Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 497-503.
    20. Fazal, Rizwan & Rehman, Syed Aziz Ur & Bhatti, M. Ishaq, 2022. "Graph theoretic approach to expose the energy-induced crisis in Pakistan," Energy Policy, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:687-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.