IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p856-d139782.html
   My bibliography  Save this article

3D Simulation of a Loss of Vacuum Accident (LOVA) in ITER (International Thermonuclear Experimental Reactor): Evaluation of Static Pressure, Mach Number, and Friction Velocity

Author

Listed:
  • Jean-François Ciparisse

    (Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
    These authors contributed equally to this work.)

  • Riccardo Rossi

    (Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
    These authors contributed equally to this work.)

  • Andrea Malizia

    (Department of Medicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Pasquale Gaudio

    (Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

Abstract

ITER (International Thermonuclear Experimental Reactor) is a magnetically confined plasma nuclear reactor. Inside it, due to plasma disruptions, the formation of neutron-activated powders, which are essentially made out of tungsten and beryllium, occurs. As many windows for diagnostics are present on the reactor, which operates at very low pressure, a LOVA (Loss of Vacuum Accident) could be possible and may lead to dust mobilisation and a toxic and radioactive fallout inside the plant. This study is aimed at reproducing numerically the first seconds of a LOVA in ITER, in order to get information about the dust resuspension risk. This work has been carried out by means of a CFD (Computational Fluid Dynamics) simulation of the beginning of the pressurisation transient inside the whole Tokamak. It has been found that the pressurization transient is extremely slow, and that the friction speed on the walls is very high, and therefore a high mobilization risk of the dust is expected on the entire internal surface of the reactor. It has been observed that a LOVA in a real-scale reactor is more severe than the one reproduced in reduced-scale facilities, as STARDUST-U, because the speeds are higher, and the dust resuspension capacity of the flow is greater.

Suggested Citation

  • Jean-François Ciparisse & Riccardo Rossi & Andrea Malizia & Pasquale Gaudio, 2018. "3D Simulation of a Loss of Vacuum Accident (LOVA) in ITER (International Thermonuclear Experimental Reactor): Evaluation of Static Pressure, Mach Number, and Friction Velocity," Energies, MDPI, vol. 11(4), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:856-:d:139782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Malizia & Luigi Antonio Poggi & Jean-François Ciparisse & Riccardo Rossi & Carlo Bellecci & Pasquale Gaudio, 2016. "A Review of Dangerous Dust in Fusion Reactors: from Its Creation to Its Resuspension in Case of LOCA and LOVA," Energies, MDPI, vol. 9(8), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Iranzo & Francisco Javier Pino & José Guerra & Francisco Bernal & Nicasio García, 2018. "Cooling Process Analysis of a 5-Drum System for Radioactive Waste Processing," Energies, MDPI, vol. 11(10), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poggi, L.A. & Gaudio, P. & Rossi, R. & Ciparisse, J.F. & Malizia, A., 2017. "Non-invasive assessment of dust concentration and relative dustiness in a dust cloud mobilized by a controlled air inlet inside STARDUST-U facility," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 527-535.
    2. Juju Jiang & Xiaoquan Li & Siting Liang & Yuankun Zhong & Lei Yang & Peng Hao & Jeffrey Soar, 2022. "Study of Parameters and Theory of Sucrose Dust Explosion," Energies, MDPI, vol. 15(4), pages 1-13, February.
    3. Donato Morea & Luigi Antonio Poggi, 2017. "An Innovative Model for the Sustainability of Investments in the Wind Energy Sector: The Use of Green Sukuk in an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 53-60.
    4. Adam Jan Zwierzyński & Wojciech Teper & Rafał Wiśniowski & Andrzej Gonet & Tomasz Buratowski & Tadeusz Uhl & Karol Seweryn, 2021. "Feasibility Study of Low Mass and Low Energy Consumption Drilling Devices for Future Space (Mining Surveying) Missions," Energies, MDPI, vol. 14(16), pages 1-17, August.

    More about this item

    Keywords

    LOVA; dust resuspension; CFD;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:856-:d:139782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.