IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics036054422100075x.html
   My bibliography  Save this article

Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time

Author

Listed:
  • Dungan, K.
  • Gregg, R.W.H.
  • Morris, K.
  • Livens, F.R.
  • Butler, G.

Abstract

Nuclear power has been identified as a key low emissions energy source, as such an understanding of fueling and disposal requirements of different fuel cycles is essential. The effect of closing the nuclear fuel cycle on heat generating waste production has been examined by quantifying wastes and assessing thermal and radiotoxic inventories going to long-term disposal. Using fuel cycle modelling software ORION, five nuclear fuel cycles have been modelled to quantify mass, packaged volume, thermal output and composition of spent fuel and HLW, normalised to electricity generation. Evolution of decay heat and radiotoxicity over disposal time scales is presented. Compared to an open fuel cycle baseline, there is little benefit apparent in thermal or radiotoxic output, when implementing a thermal recycle, though the mass of waste going to disposal is significantly reduced. Over an order of magnitude reduction in radiotoxicity is achievable if a closed fuel cycle with interim storage is deployed, and packaged volume is halved. Advanced recycling of spent fuel both reduces waste volume per TWhe and allows a period of interim storage to dramatically reduce the thermal output of wastes and radiotoxic inventory going to a disposal facility.

Suggested Citation

  • Dungan, K. & Gregg, R.W.H. & Morris, K. & Livens, F.R. & Butler, G., 2021. "Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s036054422100075x
    DOI: 10.1016/j.energy.2021.119826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100075X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    2. Gao, Ruxing & Choi, Sungyeol & Il Ko, Won & Kim, Sungki, 2017. "Economic potential of fuel recycling options: A lifecycle cost analysis of future nuclear system transition in China," Energy Policy, Elsevier, vol. 101(C), pages 526-536.
    3. Park, Byung Heung & Gao, Fanxing & Kwon, Eun-ha & Ko, Won Il, 2011. "Comparative study of different nuclear fuel cycle options: Quantitative analysis on material flow," Energy Policy, Elsevier, vol. 39(11), pages 6916-6924.
    4. Choi, Sungyeol & Nam, Hyo On & Ko, Won Il, 2016. "Environmental life cycle risk modeling of nuclear waste recycling systems," Energy, Elsevier, vol. 112(C), pages 836-851.
    5. Poinssot, Ch. & Bourg, S. & Ouvrier, N. & Combernoux, N. & Rostaing, C. & Vargas-Gonzalez, M. & Bruno, J., 2014. "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles," Energy, Elsevier, vol. 69(C), pages 199-211.
    6. Kennedy, David, 2007. "New nuclear power generation in the UK: Cost benefit analysis," Energy Policy, Elsevier, vol. 35(7), pages 3701-3716, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robin Taylor & William Bodel & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part Two: Economic Impacts," Energies, MDPI, vol. 15(7), pages 1-31, March.
    2. Islam, Md. Monirul & Shahbaz, Muhammad & Samargandi, Nahla, 2024. "The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter?," Energy, Elsevier, vol. 293(C).
    3. Robin Taylor & William Bodel & Laurence Stamford & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts," Energies, MDPI, vol. 15(4), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Taylor & William Bodel & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part Two: Economic Impacts," Energies, MDPI, vol. 15(7), pages 1-31, March.
    2. Laura Rodríguez-Penalonga & B. Yolanda Moratilla Soria, 2017. "A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies," Energies, MDPI, vol. 10(8), pages 1-16, August.
    3. Robin Taylor & William Bodel & Laurence Stamford & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts," Energies, MDPI, vol. 15(4), pages 1-35, February.
    4. Gao, Ruxing & Nam, Hyo On & Ko, Won Il & Jang, Hong, 2018. "Integrated system evaluation of nuclear fuel cycle options in China combined with an analytical MCDM framework," Energy Policy, Elsevier, vol. 114(C), pages 221-233.
    5. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    6. Hobley, Alexander, 2019. "Will gas be gone in the United Kingdom (UK) by 2050? An impact assessment of urban heat decarbonisation and low emission vehicle uptake on future UK energy system scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 695-705.
    7. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    8. Ghomian, Taher & Kizilkaya, Orhan & Choi, Jin-Woo, 2018. "Lead sulfide colloidal quantum dot photovoltaic cell for energy harvesting from human body thermal radiation," Applied Energy, Elsevier, vol. 230(C), pages 761-768.
    9. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems," Energies, MDPI, vol. 9(11), pages 1-13, October.
    10. Adeline Cortesi & Laure Dijoux & Gwenola Yannou-Le Bris & Caroline Pénicaud, 2022. "Explaining the Differences between the Environmental Impacts of 44 French Artisanal Cheeses," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    11. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    12. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    13. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    14. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    15. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. D. Finon & F. Roques, 2008. "Financing Arrangements and Industrial Organisation for New Nuclear Build in Electricity Markets," Competition and Regulation in Network Industries, Intersentia, vol. 9(3), pages 247-282, September.
    17. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    18. Zhongwen Pan & Zhigang Wang & Xiaoxiang Li & Jingrong Li & Yujiao Zhou, 2022. "Space-Time Pattern of Coupling Coordination between Environmental Regulation and Green Water Resource Efficiency in China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    19. Oracio I. Barbosa-Ayala & Jhon A. Montañez-Barrera & Cesar E. Damian-Ascencio & Adriana Saldaña-Robles & J. Arturo Alfaro-Ayala & Jose Alfredo Padilla-Medina & Sergio Cano-Andrade, 2020. "Solution to the Economic Emission Dispatch Problem Using Numerical Polynomial Homotopy Continuation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    20. Rigby, Aidan & Lindley, Ben & Cullen, Jonathan, 2023. "An exergy based assessment of the efficiency of nuclear fuel cycles," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s036054422100075x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.