Co-Processing Lignocellulosic Biomass and Sewage Digestate by Hydrothermal Carbonisation: Influence of Blending on Product Quality
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alba Dieguez-Alonso & Axel Funke & Andrés Anca-Couce & Alessandro Girolamo Rombolà & Gerardo Ojeda & Jörg Bachmann & Frank Behrendt, 2018. "Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability," Energies, MDPI, vol. 11(3), pages 1-26, February.
- Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
- Aidan Mark Smith & Ugochinyere Ekpo & Andrew Barry Ross, 2020. "The Influence of pH on the Combustion Properties of Bio-Coal Following Hydrothermal Treatment of Swine Manure," Energies, MDPI, vol. 13(2), pages 1-20, January.
- Kiran R. Parmar & Andrew B. Ross, 2019. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate," Energies, MDPI, vol. 12(9), pages 1-17, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Giovanni Esposito & Silvio Matassa & Stefano Papirio, 2022. "Biovalorization of Lignocellulosic Waste," Energies, MDPI, vol. 15(21), pages 1-3, November.
- Wilk, Małgorzata & Śliz, Maciej & Czerwińska, Klaudia & Gajek, Marcin & Kalemba-Rec, Izabela, 2024. "Improvements in dewaterability and fuel properties of hydrochars derived from hydrothermal co-carbonization of sewage sludge and organic waste," Renewable Energy, Elsevier, vol. 227(C).
- Aaron E. Brown & James M. Hammerton & Miller Alonso Camargo-Valero & Andrew B. Ross, 2022. "Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass," Energies, MDPI, vol. 15(10), pages 1-21, May.
- Kossińska, Nina & Grosser, Anna & Kwapińska, Marzena & Kwapiński, Witold & Ghazal, Heba & Jouhara, Hussam & Krzyżyńska, Renata, 2024. "Co-hydrothermal carbonization as a potential method of utilising digested sludge and screenings from wastewater treatment plants towards energy application," Energy, Elsevier, vol. 299(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
- Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
- Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
- Mateusz Jackowski & Lukasz Niedzwiecki & Magdalena Lech & Mateusz Wnukowski & Amit Arora & Monika Tkaczuk-Serafin & Marcin Baranowski & Krystian Krochmalny & Vivek K. Veetil & Przemysław Seruga & Anna, 2020. "HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues," Energies, MDPI, vol. 13(8), pages 1-20, April.
- Aragón-Briceño, C.I. & Ross, A.B. & Camargo-Valero, M.A., 2021. "Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 167(C), pages 473-483.
- Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
- Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
- Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
- Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
- Piotr Wojewódzki & Joanna Lemanowicz & Bozena Debska & Samir A. Haddad & Erika Tobiasova, 2022. "The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration," Energies, MDPI, vol. 16(1), pages 1-16, December.
- Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.
- Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
- Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
- Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
- Halina Pawlak-Kruczek & Agnieszka Urbanowska & Lukasz Niedzwiecki & Michał Czerep & Marcin Baranowski & Christian Aragon-Briceño & Małgorzata Kabsch-Korbutowicz & Amit Arora & Przemysław Seruga & Mate, 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing," Energies, MDPI, vol. 16(13), pages 1-9, July.
- Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
- Pagés-Díaz, Jhosané & Cerda Alvarado, Andrés Osvaldo & Montalvo, Silvio & Diaz-Robles, Luis & Curio, César Huiliñir, 2020. "Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses," Renewable Energy, Elsevier, vol. 157(C), pages 182-189.
- Xu, Zhi-Xiang & Song, Hao & Zhang, Shu & Tong, Si-Qi & He, Zhi-Xia & Wang, Qian & Li, Bin & Hu, Xun, 2019. "Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics," Energy, Elsevier, vol. 187(C).
- Djandja, Oraléou Sangué & Kang, Shimin & Huang, Zizhi & Li, Junqiao & Feng, Jiaqi & Tan, Zaiming & Salami, Adekunlé Akim & Lougou, Bachirou Guene, 2023. "Machine learning prediction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass," Energy, Elsevier, vol. 271(C).
- Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
More about this item
Keywords
hydrothermal carbonisation (HTC); digestate; anaerobic digestion (AD); process water; biogas (BMP); bio-coal; ash chemistry; lignocellulosic biomass; blending; combustion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1418-:d:750031. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.