IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1372-d749168.html
   My bibliography  Save this article

Potential Greenhouse Gas Mitigation for Converting High Moisture Food Waste into Bio-Coal from Hydrothermal Carbonisation in India, Europe and China

Author

Listed:
  • Nicholas Davison

    (School of Chemical and Process Engineering, University of Leeds, Woodhouse Ln, Woodhouse, Leeds LS2 9JT, UK)

  • Jaime Borbolla Gaxiola

    (School of Chemical and Process Engineering, University of Leeds, Woodhouse Ln, Woodhouse, Leeds LS2 9JT, UK)

  • Divya Gupta

    (Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India)

  • Anurag Garg

    (Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India)

  • Timothy Cockerill

    (School of Mechanical Engineering, University of Leeds, Woodhouse Ln, Woodhouse, Leeds LS2 9JT, UK)

  • Yuzhou Tang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Xueliang Yuan

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Andrew Ross

    (School of Chemical and Process Engineering, University of Leeds, Woodhouse Ln, Woodhouse, Leeds LS2 9JT, UK)

Abstract

Hydrothermal carbonisation is a promising technology for greenhouse gas (GHG) mitigation through landfill avoidance and power generation, as it can convert high-moisture wastes into bio-coal which can be used for coal substitution. The GHG mitigation potential associated with landfill avoidance of high-moisture food waste (FW) generated in India, China and the EU was calculated and the potential for coal substitution to replace either grid energy, hard coal, or lignite consumption were determined. Different HTC processing conditions were evaluated including temperature and residence times and their effect on energy consumption and energy recovery. The greatest mitigation potential was observed at lower HTC temperatures and shorter residence times with the bio-coal replacing lignite. China had the greatest total mitigation potential (194 MT CO 2 eq), whereas India had the greatest mitigation per kg of FW (1.2 kgCO 2 /kg FW). Significant proportions of overall lignite consumption could be substituted in India (12.4%) and China (7.1%), while sizable levels of methane could be mitigated in India (12.5%), China (19.3%), and the EU (7.2%). GHG savings from conversion of high-moisture FW into bio-coal and subsequent coal replacement has significant potential for reducing total GHG emissions and represents in India (3%), China (2.4%), and the EU (1%).

Suggested Citation

  • Nicholas Davison & Jaime Borbolla Gaxiola & Divya Gupta & Anurag Garg & Timothy Cockerill & Yuzhou Tang & Xueliang Yuan & Andrew Ross, 2022. "Potential Greenhouse Gas Mitigation for Converting High Moisture Food Waste into Bio-Coal from Hydrothermal Carbonisation in India, Europe and China," Energies, MDPI, vol. 15(4), pages 1-37, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1372-:d:749168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    2. Ebner, Jacqueline & Babbitt, Callie & Winer, Martin & Hilton, Brian & Williamson, Anahita, 2014. "Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products," Applied Energy, Elsevier, vol. 130(C), pages 86-93.
    3. Rentier, Gerrit & Lelieveldt, Herman & Kramer, Gert Jan, 2019. "Varieties of coal-fired power phase-out across Europe," Energy Policy, Elsevier, vol. 132(C), pages 620-632.
    4. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    5. Mahmood, Russell & Parshetti, Ganesh K. & Balasubramanian, Rajasekhar, 2016. "Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil," Energy, Elsevier, vol. 102(C), pages 187-198.
    6. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    7. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    8. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    9. Kiran R. Parmar & Andrew B. Ross, 2019. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate," Energies, MDPI, vol. 12(9), pages 1-17, April.
    10. Fiore, S. & Ruffino, B. & Campo, G. & Roati, C. & Zanetti, M.C., 2016. "Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes," Renewable Energy, Elsevier, vol. 96(PA), pages 949-959.
    11. Secondi, Luca & Principato, Ludovica & Laureti, Tiziana, 2015. "Household food waste behaviour in EU-27 countries: A multilevel analysis," Food Policy, Elsevier, vol. 56(C), pages 25-40.
    12. Vieira, Leticia Canal & Longo, Mariolina & Mura, Matteo, 2021. "Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis," Energy Policy, Elsevier, vol. 156(C).
    13. Durba Kashyap & Tripti Agarwal, 2020. "Food loss in India: water footprint, land footprint and GHG emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2905-2918, April.
    14. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    15. Priefer, Carmen & Jörissen, Juliane & Bräutigam, Klaus-Rainer, 2016. "Food waste prevention in Europe – A cause-driven approach to identify the most relevant leverage points for action," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 155-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adela Bâra & Simona-Vasilica Oprea & Niculae Oprea, 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    2. Nicholas Davison & Aaron Brown & Andrew Ross, 2023. "Potential Greenhouse Gas Mitigation from Utilising Pig Manure and Grass for Hydrothermal Carbonisation and Anaerobic Digestion in the UK, EU, and China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    3. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingfei Wang & Yuqin Yang & Guoyan Wang, 2022. "The Clean Your Plate Campaign: Resisting Table Food Waste in an Unstable World," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    2. Piras, Simone & Righi, Simone & Setti, Marco & Koseoglu, Nazli & Grainger, Matthew & stewart, Gavin & Vittuari, Matteo, 2021. "From social interactions to private environmental behaviours: The case of consumer food waste," SocArXiv 7k4vy, Center for Open Science.
    3. Thanos Ioannou & Katerina Bazigou & Afroditi Katsigianni & Michalis Fotiadis & Christina Chroni & Thrassyvoulos Manios & Ioannis Daliakopoulos & Christos Tsompanidis & Eleni Michalodimitraki & Katia L, 2022. "The “A2UFood Training Kit”: Participatory Workshops to Minimize Food Loss and Waste," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    4. Oliver Meixner & Nicolina Eleonora Kolmhofer & Felix Katt, 2020. "Consumers’ Food Waste Knowledge in Austria," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 11(04), December.
    5. Mariana Ferdeș & Bianca Ștefania Zăbavă & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu, 2022. "Food Waste Management for Biogas Production in the Context of Sustainable Development," Energies, MDPI, vol. 15(17), pages 1-27, August.
    6. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).
    7. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    8. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    9. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    10. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    11. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    12. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    14. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    15. Luca Secondi, 2019. "Expiry Dates, Consumer Behavior, and Food Waste: How Would Italian Consumers React If There Were No Longer “Best Before” Labels?," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    16. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    17. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    18. Yang, Sheng & Liang, Jianeng & Yang, Siyu & Qian, Yu, 2016. "A novel cascade refrigeration process using waste heat and its application to coal-to-SNG," Energy, Elsevier, vol. 115(P1), pages 486-497.
    19. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    20. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1372-:d:749168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.