IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1312-d747190.html
   My bibliography  Save this article

Artificial Intelligence Applications in Estimating Invisible Solar Power Generation

Author

Listed:
  • Yuan-Kang Wu

    (Department of Electrical Engineering, National Chung-Cheng University, Chia-Yi 62102, Taiwan)

  • Yi-Hui Lai

    (Department of Electrical Engineering, National Chung-Cheng University, Chia-Yi 62102, Taiwan)

  • Cheng-Liang Huang

    (Department of Electrical Engineering, National Chung-Cheng University, Chia-Yi 62102, Taiwan)

  • Nguyen Thi Bich Phuong

    (Department of Electrical Engineering, National Chung-Cheng University, Chia-Yi 62102, Taiwan)

  • Wen-Shan Tan

    (School of Engineering and Advance Engineering Platform, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia)

Abstract

In recent years, the penetration of photovoltaic (PV) power generation in Taiwan has increased significantly. However, most photovoltaic facilities, especially for small-scale sites, do not include relevant monitoring and real-time measurement devices. The invisible power generation from these PV sites would cause a huge challenge on power system scheduling. Therefore, appropriate methods to estimate invisible PV power generation are needed. The main purpose of this paper is to propose an improved fuzzy model for estimating the PV power generation, which includes the clustering processing for PV sites, selection of representative PV sites, and the improvement of the conventional fuzzy model. First, this research uses the K-nearest neighbor (KNN) algorithm to fill in some of the missing data; then, two clustering algorithms are applied to cluster all the photovoltaic sites. Next, the relationship between the power generation of a single PV site and the total generation of all sites at the same cluster is further analyzed to select the representative PV sites. Finally, an improved fuzzy model is implemented to estimate the PV power generation. This research used actual data that were measured from PV sites in Taiwan for the estimation, verification, and comparison study. The numerical results demonstrate that the proposed method can obtain an average estimation error about 7% by using limit measurements from PV sites, highlighting the high efficiency and practicability of the proposed method.

Suggested Citation

  • Yuan-Kang Wu & Yi-Hui Lai & Cheng-Liang Huang & Nguyen Thi Bich Phuong & Wen-Shan Tan, 2022. "Artificial Intelligence Applications in Estimating Invisible Solar Power Generation," Energies, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1312-:d:747190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Fei Wang & Kangping Li & Xinkang Wang & Lihui Jiang & Jianguo Ren & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features," Energies, MDPI, vol. 11(7), pages 1-19, July.
    3. Stainsby, Wendell & Zimmerle, Daniel & Duggan, Gerald P., 2020. "A method to estimate residential PV generation from net-metered load data and system install date," Applied Energy, Elsevier, vol. 267(C).
    4. Shaker, Hamid & Manfre, Daniel & Zareipour, Hamidreza, 2020. "Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites," Renewable Energy, Elsevier, vol. 147(P1), pages 1861-1869.
    5. Mingoti, Sueli A. & Lima, Joab O., 2006. "Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1742-1759, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganapathy Ramesh & Jaganathan Logeshwaran & Thangavel Kiruthiga & Jaime Lloret, 2023. "Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
    2. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    3. Guodong Liu & Thomas B. Ollis & Maximiliano F. Ferrari & Aditya Sundararajan & Kevin Tomsovic, 2022. "Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement," Energies, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
    3. Taeyoung Kim & Jinho Kim, 2021. "A Regional Day-Ahead Rooftop Photovoltaic Generation Forecasting Model Considering Unauthorized Photovoltaic Installation," Energies, MDPI, vol. 14(14), pages 1-22, July.
    4. Ji-Won Cha & Sung-Kwan Joo, 2021. "Probabilistic Short-Term Load Forecasting Incorporating Behind-the-Meter (BTM) Photovoltaic (PV) Generation and Battery Energy Storage Systems (BESSs)," Energies, MDPI, vol. 14(21), pages 1-19, October.
    5. Liu, Chao Charles & Chen, Hongkun & Shi, Jing & Chen, Lei, 2022. "Self-supervised learning method for consumer-level behind-the-meter PV estimation," Applied Energy, Elsevier, vol. 326(C).
    6. Pan, Keda & Chen, Zhaohua & Lai, Chun Sing & Xie, Changhong & Wang, Dongxiao & Li, Xuecong & Zhao, Zhuoli & Tong, Ning & Lai, Loi Lei, 2022. "An unsupervised data-driven approach for behind-the-meter photovoltaic power generation disaggregation," Applied Energy, Elsevier, vol. 309(C).
    7. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    8. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    9. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    10. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    11. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    12. Lind, Leandro & Chaves-Ávila, José Pablo & Valarezo, Orlando & Sanjab, Anibal & Olmos, Luis, 2024. "Baseline methods for distributed flexibility in power systems considering resource, market, and product characteristics," Utilities Policy, Elsevier, vol. 86(C).
    13. Andreas Wunsch & Tanja Liesch & Stefan Broda, 2022. "Feature-based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 39-54, January.
    14. Huang, Sen & Ye, Yunyang & Wu, Di & Zuo, Wangda, 2021. "An assessment of power flexibility from commercial building cooling systems in the United States," Energy, Elsevier, vol. 221(C).
    15. Gabaldón, A. & García-Garre, A. & Ruiz-Abellón, M.C. & Guillamón, A. & Álvarez-Bel, C. & Fernandez-Jimenez, L.A., 2021. "Improvement of customer baselines for the evaluation of demand response through the use of physically-based load models," Utilities Policy, Elsevier, vol. 70(C).
    16. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    17. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    18. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).
    19. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1312-:d:747190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.