IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p964-d736777.html
   My bibliography  Save this article

Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14 , 4508

Author

Listed:
  • Mark Diesendorf

    (Faculty of Arts, Design & Architecture, School of Humanities & Languages, UNSW Sydney, Sydney, NSW 2052, Australia)

Abstract

The ‘review’ by Seibert and Rees [...]

Suggested Citation

  • Mark Diesendorf, 2022. "Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14 , 4508," Energies, MDPI, vol. 15(3), pages 1-5, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:964-:d:736777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Megan K. Seibert & William E. Rees, 2021. "Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition," Energies, MDPI, vol. 14(15), pages 1-19, July.
    2. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    3. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    2. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    3. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    5. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Mark Diesendorf & Steven Hail, 2022. "Funding of the Energy Transition by Monetary Sovereign Countries," Energies, MDPI, vol. 15(16), pages 1-14, August.
    7. Howard, D.B. & Soria, R. & Thé, J. & Schaeffer, R. & Saphores, J.-D., 2020. "The energy-climate-health nexus in energy planning: A case study in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    9. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    10. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    11. Zhu, Junpeng & Meng, Dexin & Dong, Xiaofeng & Fu, Zhixin & Yuan, Yue, 2023. "An integrated electricity - hydrogen market design for renewable-rich energy system considering mobile hydrogen storage," Renewable Energy, Elsevier, vol. 202(C), pages 961-972.
    12. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    13. Oei, Pao-Yu & Burandt, Thorsten & Hainsch, Karlo & Löffler, Konstantin & Kemfert, Claudia, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 103-120.
    14. Gustavo G. Koch & Caio R. D. Osório & Ricardo C. L. F. Oliveira & Vinícius F. Montagner, 2023. "Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters," Energies, MDPI, vol. 16(4), pages 1-24, February.
    15. F.H.J. Polzin & M.W.J.L. Sanders, 2019. "How to fill the ‘financing gap’ for the transition to low-carbon energy in Europe?," Working Papers 19-18, Utrecht School of Economics.
    16. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    17. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    18. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    19. Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
    20. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:964-:d:736777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.