IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4508-d601755.html
   My bibliography  Save this article

Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition

Author

Listed:
  • Megan K. Seibert

    (The REAL Green New Deal Project, Albany, OR 97321, USA)

  • William E. Rees

    (The REAL Green New Deal Project, Albany, OR 97321, USA
    Faculty of Applied Science, School of Community and Regional Planning, University of British Columbia, Vancouver, BC V6T 1Z2, Canada)

Abstract

We add to the emerging body of literature highlighting cracks in the foundation of the mainstream energy transition narrative. We offer a tripartite analysis that re-characterizes the climate crisis within its broader context of ecological overshoot, highlights numerous collectively fatal problems with so-called renewable energy technologies, and suggests alternative solutions that entail a contraction of the human enterprise. This analysis makes clear that the pat notion of “affordable clean energy” views the world through a narrow keyhole that is blind to innumerable economic, ecological, and social costs. These undesirable “externalities” can no longer be ignored. To achieve sustainability and salvage civilization, society must embark on a planned, cooperative descent from an extreme state of overshoot in just a decade or two. While it might be easier for the proverbial camel to pass through the eye of a needle than for global society to succeed in this endeavor, history is replete with stellar achievements that have arisen only from a dogged pursuit of the seemingly impossible.

Suggested Citation

  • Megan K. Seibert & William E. Rees, 2021. "Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition," Energies, MDPI, vol. 14(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4508-:d:601755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferroni, Ferruccio & Guekos, Alexandros & Hopkirk, Robert J., 2017. "Further considerations to: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 107(C), pages 498-505.
    2. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    3. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    4. Pavel, Claudiu C. & Lacal-Arántegui, Roberto & Marmier, Alain & Schüler, Doris & Tzimas, Evangelos & Buchert, Matthias & Jenseit, Wolfgang & Blagoeva, Darina, 2017. "Substitution strategies for reducing the use of rare earths in wind turbines," Resources Policy, Elsevier, vol. 52(C), pages 349-357.
    5. Vaclav Smil, 2011. "Harvesting the Biosphere: The Human Impact," Population and Development Review, The Population Council, Inc., vol. 37(4), pages 613-636, December.
    6. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    7. Warren C. Robinson & John A. Ross, 2007. "The Global Family Planning Revolution : Three Decades of Population Policies and Programs," World Bank Publications - Books, The World Bank Group, number 6788.
    8. June Sekera & Andreas Lichtenberger, 2020. "Assessing Carbon Capture: Public Policy, Science, and Societal Need," Biophysical Economics and Resource Quality, Springer, vol. 5(3), pages 1-28, September.
    9. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    10. De Lellis, Marcelo & Reginatto, Romeu & Saraiva, Ramiro & Trofino, Alexandre, 2018. "The Betz limit applied to Airborne Wind Energy," Renewable Energy, Elsevier, vol. 127(C), pages 32-40.
    11. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    12. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ted Trainer, 2022. "Can Australia Run on Renewable Energy: Unsettled Issues and Implications," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-17, December.
    2. Ediger, Volkan Ş. & Berk, Istemi, 2023. "Future availability of natural gas: Can it support sustainable energy transition?," Resources Policy, Elsevier, vol. 85(PA).
    3. William E. Rees, 2023. "The Human Ecology of Overshoot: Why a Major ‘Population Correction’ Is Inevitable," World, MDPI, vol. 4(3), pages 1-19, August.
    4. Megan K. Seibert & William E. Rees, 2022. "Reply to Diesendorf, M. Comment on “Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14 , 4508”," Energies, MDPI, vol. 15(3), pages 1-8, January.
    5. Lucia Tamburino & Philip Cafaro & Giangiacomo Bravo, 2023. "An Analysis of Three Decades of Increasing Carbon Emissions: The Weight of the P Factor," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    6. Dillman, K.J. & Heinonen, J., 2022. "A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Marco Raugei, 2023. "Addressing a Counterproductive Dichotomy in the Energy Transition Debate," Biophysical Economics and Resource Quality, Springer, vol. 8(3), pages 1-6, September.
    8. Bolson, Natanael & Yutkin, Maxim & Rees, William & Patzek, Tadeusz, 2022. "Resilience rankings and trajectories of world's countries," Ecological Economics, Elsevier, vol. 195(C).
    9. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    10. Mark Diesendorf, 2022. "Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14 , 4508," Energies, MDPI, vol. 15(3), pages 1-5, January.
    11. Mark Diesendorf & Steven Hail, 2022. "Funding of the Energy Transition by Monetary Sovereign Countries," Energies, MDPI, vol. 15(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    2. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Damon Honnery & Patrick Moriarty, 2022. "Deep Reductions in Energy Use: Hobson’s Choice in Climate’s Last-Chance Saloon," Energies, MDPI, vol. 16(1), pages 1-4, December.
    4. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    5. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    6. Patrick Moriarty & Damon Honnery, 2019. "Energy Accounting for a Renewable Energy Future," Energies, MDPI, vol. 12(22), pages 1-16, November.
    7. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    8. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Solomon, A.A. & Sahin, Hasret & Breyer, Christian, 2024. "The pitfall in designing future electrical power systems without considering energy return on investment in planning," Applied Energy, Elsevier, vol. 369(C).
    11. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    13. Qiu, Shuo & Lei, Tian & Wu, Jiangtao & Bi, Shengshan, 2021. "Energy demand and supply planning of China through 2060," Energy, Elsevier, vol. 234(C).
    14. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    15. Patrick Moriarty & Damon Honnery, 2020. "New Approaches for Ecological and Social Sustainability in a Post-Pandemic World," World, MDPI, vol. 1(3), pages 1-14, October.
    16. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    17. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    18. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    19. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    20. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4508-:d:601755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.