IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2047-d1073500.html
   My bibliography  Save this article

Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters

Author

Listed:
  • Gustavo G. Koch

    (Power Electronics and Control Research Group, Federal University of Santa Maria—UFSM, Santa Maria 97105-900, RS, Brazil
    These authors contributed equally to this work.)

  • Caio R. D. Osório

    (Typhoon HIL—Applications Team, 400771 Novi Sad, Serbia
    These authors contributed equally to this work.)

  • Ricardo C. L. F. Oliveira

    (School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas 13083-852, SP, Brazil
    These authors contributed equally to this work.)

  • Vinícius F. Montagner

    (Power Electronics and Control Research Group, Federal University of Santa Maria—UFSM, Santa Maria 97105-900, RS, Brazil
    These authors contributed equally to this work.)

Abstract

This paper provides a procedure to design robust controllers based on observed states applied to three-phase inverters with LCL filters connected to a grid with uncertain and possibly time-varying impedances, which can arise in renewable energy systems and microgrid applications. Linear matrix inequalities are used to rapidly compute, off-line, based only on the choice of two scalar parameters for pole location, sets of gains for the controller and the observer, and also to provide a theoretical certificate of the closed-loop stability, including a limit for the rate of variations of the grid impedances. The proposed design procedure allows the easy implementation of robust state feedback controllers with a reduced number of sensors, ensuring good performance for different sets of grid impedances. Additionally, larger regions of guaranteed stability are provided by the proposed procedure, when compared with a similar condition from the literature. The control law using the observed states can ensure grid currents with low harmonic content, complying with the IEEE 1547 Standard requirements, with negligible loss of performance concerning the feedback of the measured state variables. Three optimal state feedback controllers from the literature are reproduced here and successfully implemented using the observed state variables based on the proposed procedure. In all cases, the viability of the proposal was confirmed by simulations and experimental results.

Suggested Citation

  • Gustavo G. Koch & Caio R. D. Osório & Ricardo C. L. F. Oliveira & Vinícius F. Montagner, 2023. "Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters," Energies, MDPI, vol. 16(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2047-:d:1073500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. DeConto & David Pollard & Richard B. Alley & Isabella Velicogna & Edward Gasson & Natalya Gomez & Shaina Sadai & Alan Condron & Daniel M. Gilford & Erica L. Ashe & Robert E. Kopp & Dawei Li , 2021. "The Paris Climate Agreement and future sea-level rise from Antarctica," Nature, Nature, vol. 593(7857), pages 83-89, May.
    2. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    3. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    4. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    5. Askar A. Akaev & Olga I. Davydova, 2021. "A Mathematical Description of Selected Energy Transition Scenarios in the 21st Century, Intended to Realize the Main Goals of the Paris Climate Agreement," Energies, MDPI, vol. 14(9), pages 1-28, April.
    6. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    7. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    2. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    3. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    4. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    5. Francesco Mancini & Sabrina Romano & Gianluigi Lo Basso & Jacopo Cimaglia & Livio de Santoli, 2020. "How the Italian Residential Sector Could Contribute to Load Flexibility in Demand Response Activities: A Methodology for Residential Clustering and Developing a Flexibility Strategy," Energies, MDPI, vol. 13(13), pages 1-25, July.
    6. Hemal Chowdhury & Tamal Chowdhury & Ayyoob Sharifi & Richard Corkish & Sadiq M. Sait, 2022. "Role of Biogas in Achieving Sustainable Development Goals in Rohingya Refugee Camps in Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    7. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    8. Van Uffelen, N. & Taebi, B. & Pesch, Udo, 2024. "Revisiting the energy justice framework: Doing justice to normative uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    10. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    11. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    12. Gennadiy Stroykov & Alexey Y. Cherepovitsyn & Elizaveta A. Iamshchikova, 2020. "Powering Multiple Gas Condensate Wells in Russia’s Arctic: Power Supply Systems Based on Renewable Energy Sources," Resources, MDPI, vol. 9(11), pages 1-15, November.
    13. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Prashamsa Thapa & Brijesh Mainali & Shobhakar Dhakal, 2023. "Focus on Climate Action: What Level of Synergy and Trade-Off Is There between SDG 13; Climate Action and Other SDGs in Nepal?," Energies, MDPI, vol. 16(1), pages 1-32, January.
    15. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    16. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    17. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    18. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    19. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    20. Oei, Pao-Yu & Burandt, Thorsten & Hainsch, Karlo & Löffler, Konstantin & Kemfert, Claudia, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 103-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2047-:d:1073500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.