IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p844-d732303.html
   My bibliography  Save this article

A Novel Emergency Gas-to-Power System Based on an Efficient and Long-Lasting Solid-State Hydride Storage System: Modeling and Experimental Validation

Author

Listed:
  • David Michael Dreistadt

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Julián Puszkiel

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany
    Institute of Material Science, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany)

  • José Maria Bellosta von Colbe

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Giovanni Capurso

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Gerd Steinebach

    (Hochschule Bonn-Rhein-Sieg, Institut für Technik Ressourcenschonung und Energieeffizienz, Grantham-Allee 20, 53757 Sankt Augustin, Germany)

  • Stefanie Meilinger

    (Hochschule Bonn-Rhein-Sieg, Institut für Technik Ressourcenschonung und Energieeffizienz, Grantham-Allee 20, 53757 Sankt Augustin, Germany)

  • Thi-Thu Le

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Myriam Covarrubias Guarneros

    (Institute of Material Science, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany)

  • Thomas Klassen

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany
    Institute of Material Science, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany)

  • Julian Jepsen

    (Helmholtz-Zentrum hereon GmbH, Institute of Hydrogen Technology, Max-Planck-Straße 1, 21502 Geesthacht, Germany
    Institute of Material Science, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany)

Abstract

In this paper, a gas-to-power (GtoP) system for power outages is digitally modeled and experimentally developed. The design includes a solid-state hydrogen storage system composed of TiFeMn as a hydride forming alloy (6.7 kg of alloy in five tanks) and an air-cooled fuel cell (maximum power: 1.6 kW). The hydrogen storage system is charged under room temperature and 40 bar of hydrogen pressure, reaching about 110 g of hydrogen capacity. In an emergency use case of the system, hydrogen is supplied to the fuel cell, and the waste heat coming from the exhaust air of the fuel cell is used for the endothermic dehydrogenation reaction of the metal hydride. This GtoP system demonstrates fast, stable, and reliable responses, providing from 149 W to 596 W under different constant as well as dynamic conditions. A comprehensive and novel simulation approach based on a network model is also applied. The developed model is validated under static and dynamic power load scenarios, demonstrating excellent agreement with the experimental results.

Suggested Citation

  • David Michael Dreistadt & Julián Puszkiel & José Maria Bellosta von Colbe & Giovanni Capurso & Gerd Steinebach & Stefanie Meilinger & Thi-Thu Le & Myriam Covarrubias Guarneros & Thomas Klassen & Julia, 2022. "A Novel Emergency Gas-to-Power System Based on an Efficient and Long-Lasting Solid-State Hydride Storage System: Modeling and Experimental Validation," Energies, MDPI, vol. 15(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:844-:d:732303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul, 2016. "The political economy of renewable energy policies in Germany and the EU," Utilities Policy, Elsevier, vol. 42(C), pages 33-41.
    2. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    2. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    3. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    4. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    5. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    6. Best, Rohan & Burke, Paul J., 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," Energy Policy, Elsevier, vol. 118(C), pages 404-417.
    7. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    8. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
    9. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    10. Strunz, Sebastian & Lehmann, Paul & Gawel, Erik, 2021. "Analyzing the ambitions of renewable energy policy in the EU and its Member States," Energy Policy, Elsevier, vol. 156(C).
    11. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    12. Daphne Ngar-yin Mah & Darren Man-wai Cheung, 2020. "Conceptualizing Niche–Regime Dynamics of Energy Transitions from a Political Economic Perspective: Insights from Community-Led Urban Solar in Seoul," Sustainability, MDPI, vol. 12(12), pages 1-28, June.
    13. Robert Wade & Geraint Ellis, 2022. "Reclaiming the Windy Commons: Landownership, Wind Rights, and the Assetization of Renewable Resources," Energies, MDPI, vol. 15(10), pages 1-31, May.
    14. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    15. Peipei, Wang & Eyvazov, Elchin & Giyasova, Zeynab & Kazimova, Asli, 2023. "The nexus between natural resource rents and financial wealth on economic recovery: Evidence from European Union economies," Resources Policy, Elsevier, vol. 82(C).
    16. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    17. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2024. "Maximizing self-sufficiency and minimizing grid interaction: Combining electric and molecular energy storage for decentralized balancing of variable renewable energy in local energy systems," Renewable Energy, Elsevier, vol. 229(C).
    18. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    19. Son, Yeong Geon & Choi, Sungyun & Aquah, Moses Amoasi & Kim, Sung Yul, 2023. "Systematic planning of power-to-gas for improving photovoltaic acceptance rate: Application of the potential RES penetration index," Applied Energy, Elsevier, vol. 349(C).
    20. Muhammad, Hafiz Ali & Naseem, Mujahid & Kim, Jonghwan & Kim, Sundong & Choi, Yoonseok & Lee, Young Duk, 2024. "Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:844-:d:732303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.