IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v13y1983i1p187-193.html
   My bibliography  Save this article

On the laws of large numbers for nonnegative random variables

Author

Listed:
  • Etemadi, Nasrollah

Abstract

Strong laws of large numbers concerning nonnegative random variables are obtained and then they are utilized to establish stability results, among other things, for sums of pairwise independent random variables and the range of random walks.

Suggested Citation

  • Etemadi, Nasrollah, 1983. "On the laws of large numbers for nonnegative random variables," Journal of Multivariate Analysis, Elsevier, vol. 13(1), pages 187-193, March.
  • Handle: RePEc:eee:jmvana:v:13:y:1983:i:1:p:187-193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(83)90013-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tappe, Stefan, 2021. "A note on the von Weizsäcker theorem," Statistics & Probability Letters, Elsevier, vol. 168(C).
    2. Chen, Pingyan & Sung, Soo Hak, 2016. "A strong law of large numbers for nonnegative random variables and applications," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 80-86.
    3. Siemroth, Christoph, 2014. "Why prediction markets work : the role of information acquisition and endogenous weighting," Working Papers 14-29, University of Mannheim, Department of Economics.
    4. Wallsten, Thomas S. & Diederich, Adele, 2001. "Understanding pooled subjective probability estimates," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 1-18, January.
    5. Lita da Silva, João, 2018. "Strong laws of large numbers for pairwise quadrant dependent random variables," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 349-358.
    6. Soo Hak Sung, 2014. "Marcinkiewicz–Zygmund Type Strong Law of Large Numbers for Pairwise i.i.d. Random Variables," Journal of Theoretical Probability, Springer, vol. 27(1), pages 96-106, March.
    7. Alexander J. Bogensperger & Yann Fabel & Joachim Ferstl, 2022. "Accelerating Energy-Economic Simulation Models via Machine Learning-Based Emulation and Time Series Aggregation," Energies, MDPI, vol. 15(3), pages 1-42, February.
    8. Narayanaswamy Balakrishnan & Alexei Stepanov, 2013. "Runs Based on Records: Their Distributional Properties and an Application to Testing for Dispersive Ordering," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 583-594, September.
    9. Stepanov, A., 2011. "Limit theorems for runs based on 'small spacings'," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 54-61, January.
    10. Quang, Nguyen Van & Son, Do The & Son, Le Hong, 2017. "The strong laws of large numbers for positive measurable operators and applications," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 110-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:13:y:1983:i:1:p:187-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.