IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1130-d741568.html
   My bibliography  Save this article

Incorporating Landscape Dynamics in Small-Scale Hydropower Site Location Using a GIS and Spatial Analysis Tool: The Case of Bohol, Central Philippines

Author

Listed:
  • Imelida Torrefranca

    (Graduate School of Engineering, University of San Carlos, Talamban, Cebu City 6000, Philippines
    Department of Agricultural and Biosystems Engineering, Bohol Island State University, Bilar 6319, Philippines)

  • Roland Emerito Otadoy

    (Theoretical, Computational Sciences and Engineering Group, Department of Physics, University of San Carlos, Talamban, Cebu City 6000, Philippines
    Center for Geoinformatics and Environmental Solutions, University of San Carlos, Talamban, Cebu City 6000, Philippines)

  • Alejandro Tongco

    (Graduate School of Engineering, University of San Carlos, Talamban, Cebu City 6000, Philippines)

Abstract

Hydropower depends on the elevation head and water flow of a river. However, other factors must be considered, such as the risk associated with surface processes and environmental factors. The study aims to analyze a landscape’s dynamics and locate potential sites for small-scale hydropower systems (<10 MW) using a geographic information system, the curve number method, and the TopoToolbox with a digital elevation model and available spatial datasets. Across Bohol Island in the central Philippines, the study found 94 potential sites with hydraulic heads ranging from 20–62.4 m, river discharges between 0.02 to 9.71 m 3 /s, and a total hydropower capacity of 13.595 MW. The river profile analysis classified the sites to five levels of risk to geo-hazards, with three-fourths of the sites being at ‘high’ to ‘very high’ risk levels while more than 50% of the total power can be generated in ‘low’ risk areas. Land-use and population constraints reduced the sites to 25 and the hydropower capacity by 60%. Although limited to the table assessment phase of hydropower development, the study showed the potential of small-scale hydropower systems in the study area, their spatial distribution, and the risk associated with each site. The study results provided data-limited resource managers’ and energy planners’ insights in targeting potential locations and minimizing field investigation costs and time.

Suggested Citation

  • Imelida Torrefranca & Roland Emerito Otadoy & Alejandro Tongco, 2022. "Incorporating Landscape Dynamics in Small-Scale Hydropower Site Location Using a GIS and Spatial Analysis Tool: The Case of Bohol, Central Philippines," Energies, MDPI, vol. 15(3), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1130-:d:741568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
    2. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    3. Beatriz Mayor & Ignacio Rodríguez-Muñoz & Fermín Villarroya & Esperanza Montero & Elena López-Gunn, 2017. "The Role of Large and Small Scale Hydropower for Energy and Water Security in the Spanish Duero Basin," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Tauš & Martin Beer, 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities," Energies, MDPI, vol. 15(10), pages 1-15, May.
    2. Simone Ferrari & Federica Zagarella & Paola Caputo & Marco Beccali, 2023. "Mapping Seasonal Variability of Buildings Electricity Demand profiles in Mediterranean Small Islands," Energies, MDPI, vol. 16(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    3. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Elham Hoominfar & Claudia Radel, 2020. "Contested Dam Development in Iran: A Case Study of the Exercise of State Power over Local People," Sustainability, MDPI, vol. 12(13), pages 1-19, July.
    5. Efthymios Moutsiakis & Athena Yiannakou, 2023. "Small Hydroelectric Energy and Spatial Planning: A Methodology Introducing the Concept of Territorial Carrying Capacity," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    6. Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
    7. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    8. Elham Hoominfar & Claudia Radel, 2023. "“Frankly, My Dear, I Don’t Want a Dam” in the US or in Iran: Environmental Movements and Shared Strategies in Differing Political Economies," Social Sciences, MDPI, vol. 12(3), pages 1-21, March.
    9. Manish Goyal & Vishal Singh & Akshay Meena, 2015. "Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2875-2894, June.
    10. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    11. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    12. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    13. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    14. Helge Bormann & Inge Andersen Martinez, 2014. "Towards an Indicator Based Framework Analysing the Suitability of Existing Dams for Energy Storage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1613-1630, April.
    15. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    16. Ceren Erdin & Halil Emre Akbaş, 2019. "A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    17. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    18. Bayazıt, Yıldırım & Bakış, Recep & Koç, Cengiz, 2017. "An investigation of small scale hydropower plants using the geographic information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 289-294.
    19. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    20. Pradhan, Anish & Marence, Miroslav & Franca, Mário J., 2021. "The adoption of Seawater Pump Storage Hydropower Systems increases the share of renewable energy production in Small Island Developing States," Renewable Energy, Elsevier, vol. 177(C), pages 448-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1130-:d:741568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.