IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9598-d1006688.html
   My bibliography  Save this article

Influence of Rock Properties on Structural Failure Probability—Caprock Shale Examples from the Horda Platform, Offshore Norway

Author

Listed:
  • Md Jamilur Rahman

    (Department of Geosciences, University of Oslo (UiO), 0371 Oslo, Norway)

  • Manzar Fawad

    (College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
    Former UiO Researcher.)

  • Nazmul Haque Mondol

    (Department of Geosciences, University of Oslo (UiO), 0371 Oslo, Norway
    Norwegian Geotechnical Institute (NGI), 0806 Oslo, Norway)

Abstract

In any geological subsurface fluid injection, a viable top seal is required to contain the vertical movement of the injected fluid plume. However, seal integrity assessment is challenging because of the uncertainties possessed by various parameters. A probabilistic solution might be more appropriate when significant uncertainties are present. In this study, we evaluate Drake shale caprock structural reliability using a stochastic method. Drake shale is the primary top seal in the Aurora CO 2 storage site, located in the Horda Platform area in the northern North Sea. Based on the lithological variations, Drake caprock shale is divided into two parts designated by upper and lower units. Six model scenarios from the upper and lower Drake units have been tested. The probabilistic structural failures of varying model scenarios are estimated using the First-Order Reliability Method (FORM). Drake Formation shale shows a considerably low probability of failure (~0) with a high reliability index in the initial stress-state condition and after-injection scenarios. Moreover, the parameter sensitivity study indicates that horizontal stress and cohesion are the most influential input parameters during reliability estimation. Comparative analysis between the caprock properties and failure probability reveals that rock strength properties such as cohesion and friction angle strongly dictate the probability of failure estimation. Moreover, comparing two caprock shale formations indicates that the structural failure values are not correlatable; hence, a formation-specific failure assessment is recommended.

Suggested Citation

  • Md Jamilur Rahman & Manzar Fawad & Nazmul Haque Mondol, 2022. "Influence of Rock Properties on Structural Failure Probability—Caprock Shale Examples from the Horda Platform, Offshore Norway," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9598-:d:1006688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    2. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    4. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    10. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    12. Ahmet Selim Pehlivan & Mahmut Faruk Aksit & Kemalettin Erbatur, 2021. "Fatigue Analysis Design Approach, Manufacturing and Implementation of a 500 kW Wind Turbine Main Load Frame," Energies, MDPI, vol. 14(12), pages 1-15, June.
    13. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    15. Dai, Le & Guo, Junyu & Wan, Jia-Lun & Wang, Jiang & Zan, Xueping, 2022. "A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    18. Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Xu, Zidong & Wang, Hao & Zhao, Kaiyong & Zhang, Han & Liu, Yun & Lin, Yuxuan, 2024. "Evolutionary probability density reconstruction of stochastic dynamic responses based on physics-aided deep learning," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    20. Li Yang & Fuzhao Yang & Weitao Sheng & Kun Zhou & Tianmin Huang, 2021. "Fuzzy Chaos Control of Fractional Order D-PMSG for Wind Turbine with Uncertain Parameters by State Feedback Design," Energies, MDPI, vol. 14(21), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9598-:d:1006688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.