IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9435-d1002130.html
   My bibliography  Save this article

Preparation and Thermal Model of Tetradecane/Expanded Graphite and A Spiral Wavy Plate Cold Storage Tank

Author

Listed:
  • Hongguang Zhang

    (Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd., Foshan 528311, China
    Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
    These authors contributed equally to this work.)

  • Tanghan Wu

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
    These authors contributed equally to this work.)

  • Lei Tang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)

  • Ziye Ling

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)

  • Zhengguo Zhang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)

  • Xiaoming Fang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract

A cold storage unit can store the cold energy off-peak and release it for building cooling on-peak, which can reduce the electricity load of air conditioning systems. n-tetradecane is a suitable cold storage material for air conditioning, with a phase change temperature of is 4–8 °C and a phase change enthalpy of 200 kJ/kg. However, its low thermal conductivity limits the application of n-tetradecane for high-power cold storage/release. This paper prepares a tetradecane/expanded graphite (EG) composite phase change material (CPCM), whose thermal conductivity can be increased up to 21.0 W/m·K, nearly 100 times over the raw n-tetradecane. A novel model to predict the maximum loading fraction of paraffin in the EG matrix is presented, with an error within 1.7%. We also develop a thermal conductivity model to predict the thermal conductivity of the CPCM precisely, with an error of less than 10%. In addition, an innovative spiral wave plate cold storage tank has been designed for the tetradecane/EG composite. The power and energy density of the cold storage tank are significantly improved compared to that of raw tetradecane. The energy density reaches 40 kWh/m 3 , which is high among the organic PCM thermal storage tank. This paper shows the significance of thermal conductivity enhancement in designing a cold storage tank.

Suggested Citation

  • Hongguang Zhang & Tanghan Wu & Lei Tang & Ziye Ling & Zhengguo Zhang & Xiaoming Fang, 2022. "Preparation and Thermal Model of Tetradecane/Expanded Graphite and A Spiral Wavy Plate Cold Storage Tank," Energies, MDPI, vol. 15(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9435-:d:1002130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingbiao Chen & Dekun Fu & Wenji Song & Ziping Feng, 2021. "Performance of Ice Generation System Using Supercooled Water with a Directed Evaporating Method," Energies, MDPI, vol. 14(21), pages 1-14, October.
    2. Said, M.A. & Hassan, Hamdy, 2018. "Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit," Applied Energy, Elsevier, vol. 230(C), pages 1380-1402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farah, Sleiman & Liu, Ming & Saman, Wasim, 2019. "Numerical investigation of phase change material thermal storage for space cooling," Applied Energy, Elsevier, vol. 239(C), pages 526-535.
    2. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    3. Zheng, Ziao & Huang, Bin & Lu, Gaofeng & Zhai, Xiaoqiang, 2022. "Design and optimization of an air-based phase change cold storage unit through cascaded construction for emergency cooling in IDC," Energy, Elsevier, vol. 241(C).
    4. Nikkerdar, F. & Rahimi, M. & Ranjbar, A.A. & Pakrouh, R. & Bahrampoury, R., 2021. "Solar assisted thermal storage system for free heating applications in moderate climates: A case study," Energy, Elsevier, vol. 220(C).
    5. Shun-Hsiung Peng & Shang-Lien Lo, 2024. "An Economic Analysis of Energy Saving and Carbon Mitigation by the Use of Phase Change Materials for Cool Energy Storage for an Air Conditioning System—A Case Study," Energies, MDPI, vol. 17(4), pages 1-17, February.
    6. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    7. Lei Fang & Yujie Wang, 2022. "Exploring Application of Ice Source Heat Pump Technology in Solar Heating System for Space Heating," Energies, MDPI, vol. 15(11), pages 1-11, May.
    8. Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
    9. Liang, Yan & Yang, Haibin & Wang, Huilong & Bao, Xiaohua & Cui, Hongzhi, 2024. "Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study," Energy, Elsevier, vol. 286(C).
    10. Diao, Y.H. & Liang, L. & Zhao, Y.H. & Wang, Z.Y. & Bai, F.W., 2019. "Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 233, pages 894-905.
    11. Meng Yu & Xiaowei Sun & Wenjuan Su & Defeng Li & Jun Shen & Xuejun Zhang & Long Jiang, 2022. "Investigation on the Melting Performance of a Phase Change Material Based on a Shell-and-Tube Thermal Energy Storage Unit with a Rectangular Fin Configuration," Energies, MDPI, vol. 15(21), pages 1-15, November.
    12. Shun-Hsiung Peng & Shang-Lien Lo, 2023. "Hybrid (Optimal) Selection Model for Phase Change Materials Used in the Cold Energy Storage of Air Conditioning Systems," Energies, MDPI, vol. 17(1), pages 1-15, December.
    13. Yousef, Mohamed S. & Sharaf, Mohamed & Huzayyin, A.S., 2022. "Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraffin-metal foam composite: An experimental study," Energy, Elsevier, vol. 238(PB).
    14. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9435-:d:1002130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.