IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9175-d992529.html
   My bibliography  Save this article

Feeder Losses Analysis of Marine Vessel Power Systems: A Case Study of Container Ship Power Loss Analysis Using Newton–Raphson Method

Author

Listed:
  • Ching-Jin Chen

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804021, Taiwan)

  • Chun-Lien Su

    (Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

  • Jen-Hao Teng

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804021, Taiwan)

  • Mahmoud Elsisi

    (Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
    Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt)

Abstract

Load survey has become a routine project for shipbuilding and shipping companies to investigate electrical load characteristics to enhance the power system planning and operation of marine vessels. In this brief perspective, we will outline a few steps to feeder losses analysis based on the result conducted by the load survey. The power flow and feeder loss analysis are extracted and used to determine the critical parameters that can significantly affect the system feeder losses used in the electrical load analysis in new ships. Exploring this new research direction will provide a more thorough understanding of feeder losses in marine vessel power systems. In this paper, a case study of container ship power loss analysis using the Newton–Raphson method is presented. The analysis results can provide shipbuilding corporations and ship owners with useful information for planning, designing, operating, and controlling shipboard power systems. As an energy-saving measure for ship microgrids, the frequency converters are widely used by shipyards for seawater and freshwater cooling systems and heating, ventilation, and air conditioning (HVAC) systems, so that these systems can adjust the speed of the motor according to the actual demand of the load, so as to avoid full-load operation during the motor operation. With the proposed method, other measures, such as battery energy storage systems and energy-saving lighting equipment based on LEDs, are also utilized for shipboard power demand management.

Suggested Citation

  • Ching-Jin Chen & Chun-Lien Su & Jen-Hao Teng & Mahmoud Elsisi, 2022. "Feeder Losses Analysis of Marine Vessel Power Systems: A Case Study of Container Ship Power Loss Analysis Using Newton–Raphson Method," Energies, MDPI, vol. 15(23), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9175-:d:992529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Yang & Yupeng Yuan & Rushun Ying & Boyang Shen & Teng Long, 2020. "A Novel Energy Management Strategy for a Ship’s Hybrid Solar Energy Generation System Using a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    3. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    4. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2022. "Multi-Criteria Optimal Design for FUEL Cell Hybrid Power Sources," Energies, MDPI, vol. 15(9), pages 1-18, May.
    5. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2020. "Optimal Sizing of Fuel Cell Hybrid Power Sources with Reliability Consideration," Energies, MDPI, vol. 13(13), pages 1-18, July.
    6. Wojciech Leśniewski & Daniel Piątek & Konrad Marszałkowski & Wojciech Litwin, 2020. "Small Vessel with Inboard Engine Retrofitting Concepts; Real Boat Tests, Laboratory Hybrid Drive Tests and Theoretical Studies," Energies, MDPI, vol. 13(10), pages 1-13, May.
    7. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.
    8. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    9. Hasan M. Salman & Jagadeesh Pasupuleti & Ahmad H. Sabry, 2023. "Review on Causes of Power Outages and Their Occurrence: Mitigation Strategies," Sustainability, MDPI, vol. 15(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9175-:d:992529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.