IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9170-d992377.html
   My bibliography  Save this article

Solar Energy and Biomass within Distributed Generation for a Northeast Brazil Hotel

Author

Listed:
  • Karollyne Marques de Lima

    (Graduate Program in Renewable Energy, Federal University of Paraíba, João Pessoa 58051-970, Brazil)

  • Danielle Bandeira de Mello Delgado

    (Graduate Program in Mechanical Engineering, Federal University of Paraíba, João Pessoa 58051-970, Brazil)

  • Dener Delmiro Martins

    (Graduate Program in Mechanical Engineering, Federal University of Paraíba, João Pessoa 58051-970, Brazil)

  • Monica Carvalho

    (Center of Alternative and Renewable Energy, Department of Renewable Energy Engineering, Federal University of Paraíba, João Pessoa 58051-970, Brazil)

Abstract

Besides satisfying the energy demands of buildings, distributed generation can contribute toward environmental conservation. However, determining the best configuration and operational strategy for these systems is a complex task due to the available technology options and the dynamic operating conditions of buildings and their surroundings. This work addressed the synthesis and optimization of an energy system for a commercial building (hotel). Electricity, hot water, and cooling demands were established for a hotel located in Northeast Brazil. The optimization problem was based on mixed-integer linear programming and included conventional equipment, solar energy resource (photovoltaic and thermal technologies), and biomass. The objective function of the optimization was to minimize annual economic costs, which involved considering the capital and operation costs. A reference system was established for comparison purposes, where energy demands were met conventionally (without cogeneration or renewable energy), whose annual cost was BRL 80,799. Although the optimal solution did not rely on cogeneration, it benefited from the high degree of energy integration and had a total annual cost of BRL 24,358 (70% lower). The optimal solution suggested the installation of 70 photovoltaic panels and used biomass (sugarcane bagasse) to operate a hot water boiler. Solar collectors for hot water production were not part of the optimal solution. Sensitivity analyses were also carried out, varying the electricity and natural gas tariffs, and the type of biomass employed, but the configuration of the system did not change compared with the optimal economic solution.

Suggested Citation

  • Karollyne Marques de Lima & Danielle Bandeira de Mello Delgado & Dener Delmiro Martins & Monica Carvalho, 2022. "Solar Energy and Biomass within Distributed Generation for a Northeast Brazil Hotel," Energies, MDPI, vol. 15(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9170-:d:992377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marek Borowski & Piotr Mazur & Sławosz Kleszcz & Klaudia Zwolińska, 2020. "Energy Monitoring in a Heating and Cooling System in a Building Based on the Example of the Turówka Hotel," Energies, MDPI, vol. 13(8), pages 1-20, April.
    2. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Design and operation optimization of organic Rankine cycle coupled trigeneration systems," Energy, Elsevier, vol. 142(C), pages 666-677.
    3. Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
    4. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    2. Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2015. "Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation," Energy, Elsevier, vol. 89(C), pages 55-64.
    3. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    4. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    5. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    6. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    7. Pavičević, Matija & Novosel, Tomislav & Pukšec, Tomislav & Duić, Neven, 2017. "Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb," Energy, Elsevier, vol. 137(C), pages 1264-1276.
    8. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    9. Marek Borowski & Klaudia Zwolińska, 2020. "Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques," Energies, MDPI, vol. 13(23), pages 1-19, November.
    10. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    11. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    12. Praveen Cheekatamarla & Ahmad Abu-Heiba, 2020. "A Comprehensive Review and Qualitative Analysis of Micro-Combined Heat and Power Modeling Approaches," Energies, MDPI, vol. 13(14), pages 1-26, July.
    13. Farah Mneimneh & Hasan Ghazzawi & Seeram Ramakrishna, 2023. "Review Study of Energy Efficiency Measures in Favor of Reducing Carbon Footprint of Electricity and Power, Buildings, and Transportation," Circular Economy and Sustainability, Springer, vol. 3(1), pages 447-474, March.
    14. Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2017. "Optimal vector control to a double-star induction motor," Energy, Elsevier, vol. 131(C), pages 279-288.
    15. Zezhong Li & Xiangang Peng & Yilin Xu & Fucheng Zhong & Sheng Ouyang & Kaiguo Xuan, 2023. "A Stackelberg Game-Based Model of Distribution Network-Distributed Energy Storage Systems Considering Demand Response," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    16. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    17. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).
    18. Kazagic, Anes & Merzic, Ajla & Redzic, Elma & Tresnjo, Dino, 2019. "Optimization of modular district heating solution based on CHP and RES - Demonstration case of the Municipality of Visoko," Energy, Elsevier, vol. 181(C), pages 56-65.
    19. Eduardo A. Pina & Luis M. Serra & Miguel A. Lozano & Adrián Hernández & Ana Lázaro, 2020. "Comparative Analysis and Design of a Solar-Based Parabolic Trough–ORC Cogeneration Plant for a Commercial Center," Energies, MDPI, vol. 13(18), pages 1-29, September.
    20. Dunia E Santiago, 2021. "Energy use in hotels: a case study in Gran Canaria [Calculation of tourist sector electricity consumption and its cost in subsidised insular electrical systems: the case of the Canary Islands]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1264-1276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9170-:d:992377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.