IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1968-d346256.html
   My bibliography  Save this article

Energy Monitoring in a Heating and Cooling System in a Building Based on the Example of the Turówka Hotel

Author

Listed:
  • Marek Borowski

    (Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Piotr Mazur

    (Frapol Sp. z o.o., 30-832 Kraków, Poland)

  • Sławosz Kleszcz

    (Frapol Sp. z o.o., 30-832 Kraków, Poland
    Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Klaudia Zwolińska

    (Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

Abstract

The energy consumption of buildings is very important for both economic and environmental reasons. Newly built buildings are characterized by higher insulation and airtightness of the building envelope, and are additionally equipped with technologies that minimize energy consumption in order to meet legal requirements. In existing buildings, the modernization process should be properly planned, taking into account available technologies and implementation possibilities. Hotel buildings are characterized by a large variability of energy demand, both on a daily and a yearly basis. Monitoring systems, therefore, provide the necessary information needed for proper energy management in the building. This article presents an energy analysis of the Turówka hotel located in Wieliczka (southern Poland). The historical hotel facility is being modernized as part of the project to adapt the building to the requirements of a sustainable building. The modernization proposal includes a trigeneration system with a multifunctional reverse regenerator and control module using neural algorithms. The main purpose is to improve the energy efficiency of the building and adapt it to the requirements of low-energy buildings. The implementation of a monitoring system enables energy consumption to be reduced and improves the energy performance of the building, especially through using energy management systems and control modules. The proposed retrofit solution considers the high energy consumption, structure of the energy demand, and limits of retrofit intervention on façades.

Suggested Citation

  • Marek Borowski & Piotr Mazur & Sławosz Kleszcz & Klaudia Zwolińska, 2020. "Energy Monitoring in a Heating and Cooling System in a Building Based on the Example of the Turówka Hotel," Energies, MDPI, vol. 13(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1968-:d:346256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
    2. Jayraj Ligade & Ali Razban, 2019. "Investigation of Energy Efficient Retrofit HVAC Systems for a University: Case Study," Sustainability, MDPI, vol. 11(20), pages 1-12, October.
    3. Jin Dong & Christopher Winstead & James Nutaro & Teja Kuruganti, 2018. "Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings," Energies, MDPI, vol. 11(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karollyne Marques de Lima & Danielle Bandeira de Mello Delgado & Dener Delmiro Martins & Monica Carvalho, 2022. "Solar Energy and Biomass within Distributed Generation for a Northeast Brazil Hotel," Energies, MDPI, vol. 15(23), pages 1-14, December.
    2. Marek Borowski & Klaudia Zwolińska, 2020. "Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques," Energies, MDPI, vol. 13(23), pages 1-19, November.
    3. Dunia E Santiago, 2021. "Energy use in hotels: a case study in Gran Canaria [Calculation of tourist sector electricity consumption and its cost in subsidised insular electrical systems: the case of the Canary Islands]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1264-1276.
    4. Marek Borowski, 2022. "Hotel Adapted to the Requirements of an nZEB Building—Thermal Energy Performance and Assessment of Energy Retrofit Plan," Energies, MDPI, vol. 15(17), pages 1-17, August.
    5. Piotr Michalak, 2021. "Annual Energy Performance of an Air Handling Unit with a Cross-Flow Heat Exchanger," Energies, MDPI, vol. 14(6), pages 1-16, March.
    6. Ali Hamza & Muhammad Uneeb & Iftikhar Ahmad & Komal Saleem & Zunaib Ali, 2023. "Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones," Energies, MDPI, vol. 16(10), pages 1-27, May.
    7. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    4. Ji Hyun Lim & Geun Young Yun, 2017. "Cooling Energy Implications of Occupant Factor in Buildings under Climate Change," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    5. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Qi, Zihao & Cai, Yingling & Cui, Yunxiang, 2024. "Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai," Renewable Energy, Elsevier, vol. 220(C).
    7. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    8. Nahavandinezhad, Mohammad & Zahedi, Alireza, 2022. "Conceptual design of solar/geothermal hybrid system focusing on technical, economic and environmental parameters," Renewable Energy, Elsevier, vol. 181(C), pages 1110-1125.
    9. Jinqiu Li & Qingqin Wang & Hao Zhou, 2020. "Establishment of Key Performance Indicators for Green Building Operations Monitoring—An Application to China Case Study," Energies, MDPI, vol. 13(4), pages 1-20, February.
    10. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    11. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    12. Walch, Alina & Li, Xiang & Chambers, Jonathan & Mohajeri, Nahid & Yilmaz, Selin & Patel, Martin & Scartezzini, Jean-Louis, 2022. "Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios," Energy, Elsevier, vol. 244(PB).
    13. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    14. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    15. Ge, Yongkai & Ma, Yue & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong, 2023. "Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies," Renewable Energy, Elsevier, vol. 204(C), pages 685-696.
    16. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    17. Karytsas, Spyridon & Polyzou, Olympia & Karytsas, Constantine, 2019. "Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water," Renewable Energy, Elsevier, vol. 142(C), pages 591-603.
    18. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    19. Shukla, Saunak & Bayomy, Ayman M. & Antoun, Sylvie & Mwesigye, Aggrey & Leong, Wey H. & Dworkin, Seth B., 2021. "Performance characterization of novel caisson-based thermal storage for ground source heat pumps," Renewable Energy, Elsevier, vol. 174(C), pages 43-54.
    20. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1968-:d:346256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.