Performance Analysis of Thermal Energy Storage System Integrated with a Cooking Unit
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
- Katlego Lentswe & Ashmore Mawire & Prince Owusu, 2022. "Experimental Energetic and Exergetic Performance of a Combined Solar Cooking and Thermal Energy Storage System," Energies, MDPI, vol. 15(22), pages 1-19, November.
- Nkhonjera, Lameck & Bello-Ochende, Tunde & John, Geoffrey & King’ondu, Cecil K., 2017. "A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 157-167.
- Prieto, Cristina & Cooper, Patrick & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Review of technology: Thermochemical energy storage for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 909-929.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oyirwoth P. Abedigamba & Sayuni F. Mndeme & Ashmore Mawire & Musa Rukaaya, 2023. "Heat Utilization Characteristics of Two Sensible Heat Storage Vegetable Oils for Domestic Applications," Sustainability, MDPI, vol. 15(8), pages 1-11, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
- Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
- Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
- Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
- Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Maarten Vanierschot & Ashmore Mawire, 2023. "Heat-Transfer Mechanisms in a Solar Cooking Pot with Thermal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-12, March.
- Saxena, Abhishek & Cuce, Erdem & Tiwari, G.N. & Kumar, Avnish, 2020. "Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research," Energy, Elsevier, vol. 206(C).
- Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
- Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
- Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Gokon, Nobuyuki & Yawata, Takehiro & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyun-Seok, 2019. "Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures," Energy, Elsevier, vol. 171(C), pages 971-980.
- Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
- Manuela Neri & Mariagrazia Pilotelli & Marco Traversi & Elisa Levi & Edoardo Alessio Piana & Mariasole Bannó & Eva Cuerva & Pablo Pujadas & Alfredo Guardo, 2021. "Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
More about this item
Keywords
thermal energy storage; cooking; oil–rock pebbles; thermal performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9092-:d:989655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.