IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8912-d983834.html
   My bibliography  Save this article

Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump

Author

Listed:
  • Dan Ni

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
    Shanghai Kaiquan Pump (Group) Co., Ltd., Shanghai 201800, China)

  • Feifan Wang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
    Shanghai Kaiquan Pump (Group) Co., Ltd., Shanghai 201800, China)

  • Bo Gao

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yang Zhang

    (Shanghai Marine Equipment Research Institute (SMERI), Shanghai 200031, China)

  • Shiyuan Huang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

High−energy pressure pulsation induced by rotor−stator interaction (RSI) is the primary source of flow−induced vibration noise in the pump, affecting the pump’s stability and system operation. In order to find an effective method to suppress the pressure pulsation in the pump caused by RSI, a new staggered impeller is proposed in this paper, which can significantly suppress the pressure pulsation energy. The unsteady pressure pulsation characteristic of the original impeller and the staggered impeller scheme are measured and analyzed under different working flow conditions. The results show that although the hydraulic performance of the model pump decreases to a certain extent when the staggered impeller is used, the pressure pulsation energy in the pump decreases significantly. Under 0.8 Q N –1.2 Q N working flow conditions, the energy suppression effect of the blade passing frequency ( f bpf ) amplitude is higher than 80% with the staggered impeller scheme. The Root Mean Square ( RMS ) values for distribution of pressure pulsation in different frequency bands varies greatly, and the pressure pulsation energy near the tongue is prominent. On a broader frequency band (0–6 f bpf ), the pressure pulsation energy of the staggered impeller scheme is smaller than that of the original impeller scheme. With the expansion of the frequency band, the pressure pulsation energy decreased steadily, with a minimum decrease of 37.33%.

Suggested Citation

  • Dan Ni & Feifan Wang & Bo Gao & Yang Zhang & Shiyuan Huang, 2022. "Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump," Energies, MDPI, vol. 15(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8912-:d:983834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    2. Zhang, Ning & Liu, Xiaokai & Gao, Bo & Xia, Bin, 2019. "DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump," Renewable Energy, Elsevier, vol. 141(C), pages 570-582.
    3. Ran Tao & Ruofu Xiao & Zhengwei Wang, 2018. "Influence of Blade Leading-Edge Shape on Cavitation in a Centrifugal Pump Impeller," Energies, MDPI, vol. 11(10), pages 1-16, September.
    4. Heng Qian & Denghao Wu & Chun Xiang & Junwei Jiang & Zhibing Zhu & Peijian Zhou & Jiegang Mou, 2022. "A Visualized Experimental Study on the Influence of Reflux Hole on the Double Blades Self-Priming Pump Performance," Energies, MDPI, vol. 15(13), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Ni & Hongzhong Lu & Shiyuan Huang & Sheng Lu & Yang Zhang, 2023. "Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump," Energies, MDPI, vol. 16(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    2. Zhenhua Zhou & Huacong Li & Jinbo Chen & Delin Li & Ning Zhang, 2023. "Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition," Energies, MDPI, vol. 16(11), pages 1-17, June.
    3. Ning Zhang & Delin Li & Junxian Jiang & Bo Gao & Dan Ni & Anthony Akurugo Alubokin & Wenbin Zhang, 2023. "Experimental Investigation on Velocity Fluctuation in a Vaned Diffuser Centrifugal Pump Measured by Laser Doppler Anemometry," Energies, MDPI, vol. 16(7), pages 1-17, April.
    4. Jian-Cheng Cai & Hao-Jie Chen & Volodymyr Brazhenko & Yi-Hong Gu, 2021. "Study of the Hydrodynamic Unsteady Flow Inside a Centrifugal Fan and Its Downstream Pipe Using Detached Eddy Simulation," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    5. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai & Ni, Dan, 2020. "Numerical analysis of the vortical structure and its unsteady evolution of a centrifugal pump," Renewable Energy, Elsevier, vol. 155(C), pages 748-760.
    6. Ning Zhang & Delin Li & Bo Gao & Dan Ni & Zhong Li, 2022. "Unsteady Pressure Pulsations in Pumps—A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    7. Leilei Du & Fankun Zheng & Bo Gao & Mona Gad & Delin Li & Ning Zhang, 2024. "Numerical Investigation of Rotor and Stator Matching Mode on the Complex Flow Field and Pressure Pulsation of a Vaned Centrifugal Pump," Energies, MDPI, vol. 17(10), pages 1-19, May.
    8. Zhu, Hongtao & Gao, Xueping & Liu, Yinzhu & Liu, Shuai, 2023. "Numerical and experimental assessment of the water discharge segment in a pumped-storage power station," Energy, Elsevier, vol. 265(C).
    9. Dan Ni & Jinbo Chen & Feifan Wang & Yanjuan Zheng & Yang Zhang & Bo Gao, 2023. "Investigation into Dynamic Pressure Pulsation Characteristics in a Centrifugal Pump with Staggered Impeller," Energies, MDPI, vol. 16(9), pages 1-14, April.
    10. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Li, Lin & Tan, Dapeng & Wang, Tong & Yin, Zichao & Fan, Xinghua & Wang, Ronghui, 2021. "Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method," Energy, Elsevier, vol. 216(C).
    12. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    13. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    14. Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
    15. Lin, Tong & Zhang, Jiajing & Wei, Bisheng & Zhu, Zuchao & Li, Xiaojun, 2024. "The role of bionic tubercle leading-edge in a centrifugal pump as turbines(PATs)," Renewable Energy, Elsevier, vol. 222(C).
    16. Xiaoran Zhao & Yongyao Luo & Zhengwei Wang & Yexiang Xiao & François Avellan, 2019. "Unsteady Flow Numerical Simulations on Internal Energy Dissipation for a Low-Head Centrifugal Pump at Part-Load Operating Conditions," Energies, MDPI, vol. 12(10), pages 1-20, May.
    17. Dan Ni & Hongzhong Lu & Shiyuan Huang & Sheng Lu & Yang Zhang, 2023. "Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump," Energies, MDPI, vol. 16(11), pages 1-21, May.
    18. Yun Long & Mingyu Zhang & Zhen Zhou & Jinqing Zhong & Ce An & Yong Chen & Churui Wan & Rongsheng Zhu, 2023. "Research on Cavitation Wake Vortex Structures Near the Impeller Tip of a Water-Jet Pump," Energies, MDPI, vol. 16(4), pages 1-20, February.
    19. Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
    20. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai, 2020. "DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump," Renewable Energy, Elsevier, vol. 153(C), pages 193-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8912-:d:983834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.