IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4617-d846529.html
   My bibliography  Save this article

A Visualized Experimental Study on the Influence of Reflux Hole on the Double Blades Self-Priming Pump Performance

Author

Listed:
  • Heng Qian

    (Zhejiang Engineering Research Center for Advanced Hydraulic Equipment, School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Denghao Wu

    (College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China)

  • Chun Xiang

    (Zhejiang Engineering Research Center for Advanced Hydraulic Equipment, School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Junwei Jiang

    (Zhejiang Engineering Research Center for Advanced Hydraulic Equipment, School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Zhibing Zhu

    (Shimge Pump Industry (Hangzhou) Co., Ltd., Hangzhou 310018, China)

  • Peijian Zhou

    (College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China)

  • Jiegang Mou

    (College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract

The self-priming pump is a kind of centrifugal pump product with self-priming function, and the structural parameters of its reflux hole determine the performance. In order to reveal the mechanism of the self-priming process, we summarized the influence of structure parameters of the reflux hole on the performance of the self-priming pump. In this study, the transparent experimental pump was designed and manufactured, and a visual test bench was built. The gas–liquid two-phase flow pattern during the self-priming process with different reflux hole structure parameters was captured by high-speed camera. Results showed that: (1) the reflux hole of the self-priming pump affected the self-priming performance of the pump by affecting the backflow rate of the gas and liquid phases during the self-priming process. (2) Due to the uneven distribution of liquid velocity in the pump, the position of reflux hole had an obvious impact on the duration of self-priming middle stage, and the shortest duration was 13 s when φ = +15° and the longest duration was 45 s when φ = −30°. (3) The diameter of reflux hole had a very significant impact on the duration of the self-priming middle stage, and the shortest duration was 17 s when d = 10 mm and the longest duration was 94 s when d = 0 mm.

Suggested Citation

  • Heng Qian & Denghao Wu & Chun Xiang & Junwei Jiang & Zhibing Zhu & Peijian Zhou & Jiegang Mou, 2022. "A Visualized Experimental Study on the Influence of Reflux Hole on the Double Blades Self-Priming Pump Performance," Energies, MDPI, vol. 15(13), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4617-:d:846529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huican Luo & Peijian Zhou & Lingfeng Shu & Jiegang Mou & Haisheng Zheng & Chenglong Jiang & Yantian Wang, 2022. "Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model," Energies, MDPI, vol. 15(9), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Ni & Feifan Wang & Bo Gao & Yang Zhang & Shiyuan Huang, 2022. "Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump," Energies, MDPI, vol. 15(23), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqiang Zhou & Peijian Zhou & Chun Xiang & Yang Wang & Jiegang Mou & Jiayi Cui, 2023. "A Review of Bionic Structures in Control of Aerodynamic Noise of Centrifugal Fans," Energies, MDPI, vol. 16(11), pages 1-24, May.
    2. Hao Wang & Peijian Zhou & Ting Chen & Jiegang Mou & Jiayi Cui & Huiming Zhang, 2023. "Optimization of Liquid−Liquid Mixing in a Novel Mixer Based on Hybrid SVR-DE Model," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
    4. Maosen Xu & Guorui Zeng & Dazhuan Wu & Jiegang Mou & Jianfang Zhao & Shuihua Zheng & Bin Huang & Yun Ren, 2022. "Structural Optimization of Jet Fish Pump Design Based on a Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 15(11), pages 1-16, June.
    5. Huiyan Zhang & Daohang Zou & Xuelong Yang & Jiegang Mou & Qiwei Zhou & Maosen Xu, 2022. "Liquid–Gas Jet Pump: A Review," Energies, MDPI, vol. 15(19), pages 1-15, September.
    6. Wanming Pan & Junkang Li & Guotao Zhang & Le Zhou & Ming Tu, 2022. "Multi-Objective Optimization of Organic Rankine Cycle (ORC) for Tractor Waste Heat Recovery Based on Particle Swarm Optimization," Energies, MDPI, vol. 15(18), pages 1-24, September.
    7. Zhiqiang Yin & Lin Shi & Junru Luo & Shoukun Xu & Yang Yuan & Xinxin Tan & Jiaqun Zhu, 2023. "Pump Feature Construction and Electrical Energy Consumption Prediction Based on Feature Engineering and LightGBM Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-17, January.
    8. Lei Xu & Tao Jiang & Chuan Wang & Dongtao Ji & Wei Shi & Bo Xu & Weigang Lu, 2022. "Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds," Energies, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4617-:d:846529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.