IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4345-d1156473.html
   My bibliography  Save this article

Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump

Author

Listed:
  • Dan Ni

    (Shanghai Kaiquan Pump (Group) Co., Ltd., Shanghai 201800, China
    School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Hongzhong Lu

    (Shanghai Kaiquan Pump (Group) Co., Ltd., Shanghai 201800, China)

  • Shiyuan Huang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Sheng Lu

    (Shanghai Kaiquan Pump (Group) Co., Ltd., Shanghai 201800, China)

  • Yang Zhang

    (Shanghai Marine Equipment Research Institute (SMERI), Shanghai 200031, China)

Abstract

The nuclear reactor coolant pump (RCP) is the core piece of equipment of a nuclear power plant (NPP). The energy performance and internal flow characteristics of RCPs are revealed by effective measurement methods, which are helpful to understand the flow mechanism of RCPs. The present work is intended to conduct an integrated study based on the energy performance test and Particle Image Velocimetry (PIV) flow-field non-contact measurement of the RCP. In addition, the prediction results of different turbulence models are compared with experimental results in detail. Through energy performance measurement and numerical calculation analysis, it can be found that various turbulence models have the ability to predict the performance of RCPs in engineering applications. At 0.8~1.2 Φ d operating conditions, the maximum error is less than 10% and the minimum error is less than 0.1% by analyzing the energy performance of numerical calculations and experimental results. The PIV results show that the velocity of the discharge nozzle varies greatly from right (outlet of diffuser channel 2) to left (outlet of diffuser channel 12) due to different flow structures. Through the qualitative and quantitative comparison of the internal flow field, it can be concluded that, except for the low flow rate, compared with other computational models, the Realizable k-ε model can better predict the internal flow field of an RCP. The reasons for the experimental error and numerical calculation error are analyzed in detail, and the results can provide a reference for forecasting an RCP internal flow field with a special and complex structure.

Suggested Citation

  • Dan Ni & Hongzhong Lu & Shiyuan Huang & Sheng Lu & Yang Zhang, 2023. "Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump," Energies, MDPI, vol. 16(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4345-:d:1156473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Ni & Feifan Wang & Bo Gao & Yang Zhang & Shiyuan Huang, 2022. "Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump," Energies, MDPI, vol. 15(23), pages 1-15, November.
    2. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    3. Dan Ni & Jinbo Chen & Feifan Wang & Yanjuan Zheng & Yang Zhang & Bo Gao, 2023. "Investigation into Dynamic Pressure Pulsation Characteristics in a Centrifugal Pump with Staggered Impeller," Energies, MDPI, vol. 16(9), pages 1-14, April.
    4. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leilei Du & Fankun Zheng & Bo Gao & Mona Gad & Delin Li & Ning Zhang, 2024. "Numerical Investigation of Rotor and Stator Matching Mode on the Complex Flow Field and Pressure Pulsation of a Vaned Centrifugal Pump," Energies, MDPI, vol. 17(10), pages 1-19, May.
    2. Dan Ni & Feifan Wang & Bo Gao & Yang Zhang & Shiyuan Huang, 2022. "Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump," Energies, MDPI, vol. 15(23), pages 1-15, November.
    3. Zhu, Hongtao & Gao, Xueping & Liu, Yinzhu & Liu, Shuai, 2023. "Numerical and experimental assessment of the water discharge segment in a pumped-storage power station," Energy, Elsevier, vol. 265(C).
    4. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    5. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    6. Dan Ni & Jinbo Chen & Feifan Wang & Yanjuan Zheng & Yang Zhang & Bo Gao, 2023. "Investigation into Dynamic Pressure Pulsation Characteristics in a Centrifugal Pump with Staggered Impeller," Energies, MDPI, vol. 16(9), pages 1-14, April.
    7. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    9. Zhenhua Zhou & Huacong Li & Jinbo Chen & Delin Li & Ning Zhang, 2023. "Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition," Energies, MDPI, vol. 16(11), pages 1-17, June.
    10. Li, Lin & Tan, Dapeng & Wang, Tong & Yin, Zichao & Fan, Xinghua & Wang, Ronghui, 2021. "Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method," Energy, Elsevier, vol. 216(C).
    11. Liu, Ming & Tan, Lei & Zhao, Xuechu & Ma, Can & Gou, Jinlan, 2024. "Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system," Energy, Elsevier, vol. 299(C).
    12. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    13. Ning Zhang & Delin Li & Junxian Jiang & Bo Gao & Dan Ni & Anthony Akurugo Alubokin & Wenbin Zhang, 2023. "Experimental Investigation on Velocity Fluctuation in a Vaned Diffuser Centrifugal Pump Measured by Laser Doppler Anemometry," Energies, MDPI, vol. 16(7), pages 1-17, April.
    14. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    15. Hao Yu & Chuan Wang & Guohui Li & Hongliang Wang & Yang Yang & Shaohui Wu & Weidong Cao & Shanshan Li, 2023. "Steady and Unsteady Flow Characteristics inside Short Jet Self-Priming Pump," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    16. Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
    17. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    18. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    19. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    20. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4345-:d:1156473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.