IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8911-d983824.html
   My bibliography  Save this article

Performance Assessment of a Novel Solar and Biomass-Based Multi-Generation System Equipped with Nanofluid-Based Compound Parabolic Collectors

Author

Listed:
  • Alla Ali Ibrahim

    (Applied Research and Development Organization, Tripoli 22131, Libya)

  • Muhammet Kayfeci

    (Department of Energy Systems Engineering, Karabük University, Karabük 78000, Turkey)

  • Aleksandar G. Georgiev

    (Department of Mechanics, Technical University of Sofia, Plovdiv Branch, 25 Tsanko Diustabanov Str., 4000 Plovdiv, Bulgaria)

  • Gülşah Karaca Dolgun

    (Department of Energy Systems Engineering, Muğla Sıtkı Koçman University, Muğla 48000, Turkey)

  • Ali Keçebaş

    (Department of Energy Systems Engineering, Muğla Sıtkı Koçman University, Muğla 48000, Turkey)

Abstract

The current paper proposes a novel multi-generation system, integrated with compound parabolic collectors and a biomass combustor. In addition to analyzing the comprehensive system in a steady state, the feasibility of using nanofluids as heat transfer fluids in the solar cycle and their effect on the overall performance of the system was studied. The multi-generation system is generally designed for generating electricity, cooling, freshwater, drying, hot water, and hydrogen, with the help of six subsystems. These include a double stage refrigeration system, an organic Rankine cycle, a steam Rankine cycle, a dryer, a proton exchange membrane electrolyzer, and a multistage flash distillation system. Two types of nanoparticles (graphene, silver), which have various high-quality properties when used within ethylene glycol, were chosen as absorbing fluids in the solar cycle. The performance parameters of the base case thermodynamic analysis and some of the variable parameters were calculated, and their effect on system performance was determined. According to the results, a spike in solar irradiation, ambient temperature, output temperature of biomass combustor and nanofluids’ concentration positively affected the overall system performance. The results also clearly showed an improvement in system performance when using nanofluids as working fluids in solar collectors.

Suggested Citation

  • Alla Ali Ibrahim & Muhammet Kayfeci & Aleksandar G. Georgiev & Gülşah Karaca Dolgun & Ali Keçebaş, 2022. "Performance Assessment of a Novel Solar and Biomass-Based Multi-Generation System Equipped with Nanofluid-Based Compound Parabolic Collectors," Energies, MDPI, vol. 15(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8911-:d:983824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    2. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    3. Toghyani, S. & Afshari, E. & Baniasadi, E. & Shadloo, M.S., 2019. "Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system," Renewable Energy, Elsevier, vol. 141(C), pages 1013-1025.
    4. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    5. Jie Ji & Jiayu Zhang & Xiaoying Jia & Rundong Ji & Zhenglin Sheng & Jingxin Qin & Huanyu Zhao & Jiankang Tang & Jiaoyue Su & Yaodong Wang, 2022. "A Working Fluid Assessment for a Biomass Organic Rankine Cycle under Different Conditions," Energies, MDPI, vol. 15(19), pages 1-20, September.
    6. Tailu Li & Xuelong Li & Haiyang Gao & Xiang Gao & Nan Meng, 2022. "Thermodynamic Performance of Geothermal Energy Cascade Utilization for Combined Heating and Power Based on Organic Rankine Cycle and Vapor Compression Cycle," Energies, MDPI, vol. 15(19), pages 1-24, October.
    7. Subramani, J. & Nagarajan, P.K. & Mahian, Omid & Sathyamurthy, Ravishankar, 2018. "Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime," Renewable Energy, Elsevier, vol. 119(C), pages 19-31.
    8. Yosaf, Salem & Ozcan, Hasan, 2018. "Exergoeconomic investigation of flue gas driven ejector absorption power system integrated with PEM electrolyser for hydrogen generation," Energy, Elsevier, vol. 163(C), pages 88-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    3. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    4. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    5. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    9. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    10. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    11. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    12. Nadine Székely & Jan vom Brocke, 2017. "What can we learn from corporate sustainability reporting? Deriving propositions for research and practice from over 9,500 corporate sustainability reports published between 1999 and 2015 using topic ," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    13. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.
    14. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    15. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    16. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    17. Sara Sousa, 2021. "Environmental Taxation in Portugal: A Contribution to Sustainability," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir & Sofia Vale (ed.), Eurasian Economic Perspectives, pages 369-382, Springer.
    18. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    19. Tükenmez, Mine & Demireli, Erhan, 2012. "Renewable energy policy in Turkey with the new legal regulations," Renewable Energy, Elsevier, vol. 39(1), pages 1-9.
    20. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8911-:d:983824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.