IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8699-d977769.html
   My bibliography  Save this article

Distributed Permanent Magnet Direct-Drive Belt Conveyor System and Its Control Strategy

Author

Listed:
  • Qixun Zhou

    (School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Hao Gong

    (School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Guanghui Du

    (School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yingxing Zhang

    (School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Hucheng He

    (School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

The long-distance traditional belt conveyor driven by a single high-power motor has the problems of excessive tension increments and sharp fluctuations in speed and tension. This paper designs a distributed permanent magnet direct drive belt conveyor system. The dynamic model of the conveyor belt unit and the permanent magnet motor is analyzed. The multi-motor ring coupling control strategy and the double sliding film direct torque control strategy of the belt conveyor system are formulated. The mechanical-electrical coupling dynamic model of the belt conveyor system is built. Using MATLAB/Simulink modeling and simulation, the vector control strategy and electromechanical coupling dynamic behavior of the traditional belt conveyor system and the distributed permanent magnet direct drive belt conveyor system under light load start-up and local variable load operation conditions are studied. The results show that: the distributed permanent magnet direct drive belt conveyor system significantly reduces the peak of conveyor belt tension increment; the time spent under the starting light-load operation condition is shorter, and the fluctuation amplitude of speed and tension is smaller; it is possible to reduce the speed and tension fluctuation range of the conveying system and improve the robustness of the conveying system under local variable load conditions. Experiments have verified that increasing the number of drive motors in a conventional belt conveyor can suppress the disturbance caused by local load changes, and the distributed permanent magnet direct-drive belt conveyor has better dynamic regulation performance.

Suggested Citation

  • Qixun Zhou & Hao Gong & Guanghui Du & Yingxing Zhang & Hucheng He, 2022. "Distributed Permanent Magnet Direct-Drive Belt Conveyor System and Its Control Strategy," Energies, MDPI, vol. 15(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8699-:d:977769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunyu Yang & Jinhao Liu & Heng Li & Linna Zhou, 2018. "Energy Modeling and Parameter Identification of Dual-Motor-Driven Belt Conveyors without Speed Sensors," Energies, MDPI, vol. 11(12), pages 1-17, November.
    2. He, Daijie & Pang, Yusong & Lodewijks, Gabriel, 2017. "Green operations of belt conveyors by means of speed control," Applied Energy, Elsevier, vol. 188(C), pages 330-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiang Zhao & Liang Xu & Bo Wang, 2023. "Multi-Factor Coupling Analysis and Optimization Method for High-Quality Electrical Machine Systems," Energies, MDPI, vol. 16(7), pages 1-3, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor," Energies, MDPI, vol. 14(19), pages 1-17, September.
    2. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    3. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    4. Zhang, Shirong & Mao, Wei, 2017. "Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology," Applied Energy, Elsevier, vol. 198(C), pages 65-76.
    5. Yanping Yao & Bisheng Zhang, 2020. "Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    6. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    7. Witold Kawalec & Natalia Suchorab & Martyna Konieczna-Fuławka & Robert Król, 2020. "Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine," Energies, MDPI, vol. 13(19), pages 1-10, October.
    8. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
    9. Witold Kawalec & Robert Król, 2021. "Generating of Electric Energy by a Declined Overburden Conveyor in a Continuous Surface Mine," Energies, MDPI, vol. 14(13), pages 1-11, July.
    10. Jianhua Ji & Changyun Miao & Xianguo Li & Yi Liu, 2021. "Speed regulation strategy and algorithm for the variable-belt-speed energy-saving control of a belt conveyor based on the material flow rate," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8699-:d:977769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.