IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8601-d975104.html
   My bibliography  Save this article

Surrogate Model for Design Uncertainty Estimation of Nonlinear Electromagnetic Vibration Energy Harvester

Author

Listed:
  • Marcin Kulik

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland)

  • Rafał Gabor

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland)

  • Mariusz Jagieła

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland)

Abstract

The paper proposes a solution to the problem of estimating the uncertainty of the output power with respect to the design parameters for an electromagnetic vibration energy harvesting converter. Due to costly utilisation of time-domain mathematical models involved in the procedure of determination of the average output power of the system, an algorithm for developing the surrogate model that enables rapid estimation of this quantity within the prescribed frequency band limits is proposed. As a result, the metamodel sensitive to the most impactful design parameters is developed using Kriging with successive refinement of the design grid for gaining the accuracy. Under operational conditions with a constant magnitude of the acceleration signal and the prescribed frequency band limits, the surrogate model enables evaluation of the average output power of the system at 10 5 design points in less than 2 s of computer execution time. The consistency and accuracy of the results obtained from the surrogate model is confirmed by comparison of selected results of computations with measurements carried out on the manufactured prototype. Based on the latter and the surrogate model, the confidence intervals for the design procedure were determined and the most important spread quantities were estimated, providing quantitative information on the accuracy of the design procedure developed for the considered system.

Suggested Citation

  • Marcin Kulik & Rafał Gabor & Mariusz Jagieła, 2022. "Surrogate Model for Design Uncertainty Estimation of Nonlinear Electromagnetic Vibration Energy Harvester," Energies, MDPI, vol. 15(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8601-:d:975104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zimmermann, H. -J., 2000. "An application-oriented view of modeling uncertainty," European Journal of Operational Research, Elsevier, vol. 122(2), pages 190-198, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dias, Luis C. & Climaco, Joao N., 2005. "Dealing with imprecise information in group multicriteria decisions: a methodology and a GDSS architecture," European Journal of Operational Research, Elsevier, vol. 160(2), pages 291-307, January.
    2. Manuel E. SANSALVADOR & José M. BROTONS, 2017. "The Application of OWAs in Expertise Processes: The Development of a Model for the Quantification of Hidden Quality Costs," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(3), pages 73-90.
    3. Kikuchi, Shinya & Chakroborty, Partha, 2006. "Place of possibility theory in transportation analysis," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 595-615, September.
    4. Paulo Afonso & Vishad Vyas & Ana Antunes & Sérgio Silva & Boris P. J. Bret, 2021. "A Stochastic Approach for Product Costing in Manufacturing Processes," Mathematics, MDPI, vol. 9(18), pages 1-23, September.
    5. Püschel, Tim & Schryen, Guido & Hristova, Diana & Neumann, Dirk, 2015. "Revenue management for Cloud computing providers: Decision models for service admission control under non-probabilistic uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 637-647.
    6. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    7. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    8. Abdelkader Baaziz & Luc Quoniam, 2014. "Contribution to reduce risks related to strategic decisions in new uncertain competitive environments: The case of Algerian State-Owned Firms," Post-Print hal-01016127, HAL.
    9. Chan, Pang & Hui, Chi-Wai & Li, Wenkai & Sakamoto, Haruo & Hirata, Kentaro & Li, Pu, 2006. "Long-term electricity contract optimization with demand uncertainties," Energy, Elsevier, vol. 31(13), pages 2469-2485.
    10. Kangas, Annika S. & Kangas, Jyrki, 2004. "Probability, possibility and evidence: approaches to consider risk and uncertainty in forestry decision analysis," Forest Policy and Economics, Elsevier, vol. 6(2), pages 169-188, March.
    11. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    12. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    14. Violeta Keršulienė & Zenonas Turskis, 2014. "A hybrid linguistic fuzzy multiple criteria group selection of a chief accounting officer," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 232-252, April.
    15. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    16. Amin Vafadarnikjoo & Madjid Tavana & Tiago Botelho & Konstantinos Chalvatzis, 2020. "A neutrosophic enhanced best–worst method for considering decision-makers’ confidence in the best and worst criteria," Annals of Operations Research, Springer, vol. 289(2), pages 391-418, June.
    17. Abdelkader Baaziz & Luc Quoniam, 2013. "Réduire les risques des décisions stratégiques dans les nouveaux environnements concurrentiels incertains : Cas des Entreprises Publiques Algériennes," Post-Print hal-00822969, HAL.
    18. Janssen, J.A.E.B. & Krol, M.S. & Schielen, R.M.J. & Hoekstra, A.Y. & de Kok, J.-L., 2010. "Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models," Ecological Modelling, Elsevier, vol. 221(9), pages 1245-1251.
    19. Kijazi, Martin Herbert & Kant, Shashi, 2011. "Social acceptability of alternative forest regimes in Mount Kilimanjaro, Tanzania, using stakeholder attitudes as metrics of uncertainty," Forest Policy and Economics, Elsevier, vol. 13(4), pages 242-257, April.
    20. de Brito, Marisa P. & van der Laan, Erwin A., 2009. "Inventory control with product returns: The impact of imperfect information," European Journal of Operational Research, Elsevier, vol. 194(1), pages 85-101, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8601-:d:975104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.