IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8514-d972542.html
   My bibliography  Save this article

Optimizing Recloser Settings in an Active Distribution System Using the Differential Evolution Algorithm

Author

Listed:
  • Siyabonga Brian Gumede

    (Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)

  • Akshay Kumar Saha

    (Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)

Abstract

A recloser requires a fast operating time in the first shot to optimally clear a temporary fault. The operating time is dependent on the time-dial, the pick-up settings, and the fault current. The recloser detects the fault current from the grid supply; however, the connection of the generators in the distribution system can contribute to the fault current. Depending on the location of the generators and the direction of the current, the fault current can decrease and cause an increase in the operating time. Therefore, the optimal settings that can minimize the operating time may need to be determined. This paper simulates the behavior of a recloser in its first shot for clearing a temporary fault and tests its performance in an active distribution system that has two types of distributed generators. It then uses the differential evolution algorithm to find the optimal settings in the active distribution voltage conditions. It also applies modifications to the differential evolution algorithm and uses these modifications to find robust settings. It then uses an exponential scale factor to balance the exploration and exploitation of the algorithm chosen. Simscape power systems in Matlab Simulink is used to construct the active distribution system and simulate the cases, while the Matlab script is used to run the code for the differential evolution algorithm. Six cases are performed to find the optimal settings of the recloser. The results show that the selected settings and the differential evolution algorithm modification can optimize the operation of the recloser.

Suggested Citation

  • Siyabonga Brian Gumede & Akshay Kumar Saha, 2022. "Optimizing Recloser Settings in an Active Distribution System Using the Differential Evolution Algorithm," Energies, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8514-:d:972542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    2. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    2. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. He, Jiawei & Mu, Rui & Li, Bin & Li, Ye & Zhou, Bohao & Xie, Zhongrun & Wang, Wenbo, 2024. "Applicability boundary calculation for directional current protection in distribution networks with accessed PV power sources," Applied Energy, Elsevier, vol. 370(C).
    4. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    5. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    6. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    7. Xiaogang Dong & Jinqiang Gan & Hao Wu & Changchang Deng & Sisheng Liu & Chaolong Song, 2022. "Self-Triggered Model Predictive Control of AC Microgrids with Physical and Communication State Constraints," Energies, MDPI, vol. 15(3), pages 1-16, February.
    8. Servín-Campuzano, Hermelinda & Domínguez-Pérez, Valeria Monserrat & Marín-Mendoza, Pablo César & Panales-Pérez, Alexander & Fuentes-Cortés, Luis Fabián, 2024. "The role of storage in energy security performance based on diversification and concentration for distributed energy systems," Renewable Energy, Elsevier, vol. 229(C).
    9. Tabassum, Tambiara & Toker, Onur & Khalghani, Mohammad Reza, 2024. "Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network," Applied Energy, Elsevier, vol. 355(C).
    10. Tomin, Nikita & Shakirov, Vladislav & Kozlov, Aleksander & Sidorov, Denis & Kurbatsky, Victor & Rehtanz, Christian & Lora, Electo E.S., 2022. "Design and optimal energy management of community microgrids with flexible renewable energy sources," Renewable Energy, Elsevier, vol. 183(C), pages 903-921.
    11. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    12. Dagar, Annu & Gupta, Pankaj & Niranjan, Vandana, 2021. "Microgrid protection: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Uzair, Muhammad & Li, Li & Eskandari, Mohsen & Hossain, Jahangir & Zhu, Jian Guo, 2023. "Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. Panda, Mitali & Nayak, Yogesh Kumar, 2022. "Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A Context of Transmission Congestion Problem," Energy, Elsevier, vol. 254(PC).
    15. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    16. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).
    17. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    18. Sadeghi, M. & Kalantar, M., 2023. "Fully decentralized multi-agent coordination scheme in smart distribution restoration: Multilevel consensus," Applied Energy, Elsevier, vol. 350(C).
    19. Anatolyy Dzyuba & Irina Solovyeva & Aleksandr Semikolenov, 2023. "Raising the Resilience of Industrial Manufacturers through Implementing Natural Gas-Fired Distributed Energy Resource Systems with Demand Response," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    20. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8514-:d:972542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.