IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i11p4481-4496d21410.html
   My bibliography  Save this article

Supplementary Controller Design for SSR Damping in a Series-Compensated DFIG-Based Wind Farm

Author

Listed:
  • Zaijun Wu

    (School of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing, Jiangsu 210096, China)

  • Chanxia Zhu

    (School of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing, Jiangsu 210096, China)

  • Minqiang Hu

    (School of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing, Jiangsu 210096, China)

Abstract

The increasing presence of wind power in power systems will likely drive the integration of large wind farms with electrical networks that are series-compensated to sustain large power flows. This may potentially lead to subsynchronous resonance (SSR) issues. In this paper, a supplementary controller on the grid-side converter (GSC) control loop is designed to mitigate SSR for wind power systems based on doubly fed induction generators (DFIGs) with back-to-back converters. Different supplementary controller feedback signals and modulated-voltage injecting points are proposed and compared based on modal analysis and verified through root locus analysis to identify the optimal feedback signal and the most effective control location for SSR damping. The validity and effectiveness of the proposed supplemental control are demonstrated on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation analysis using Matlab/Simulink.

Suggested Citation

  • Zaijun Wu & Chanxia Zhu & Minqiang Hu, 2012. "Supplementary Controller Design for SSR Damping in a Series-Compensated DFIG-Based Wind Farm," Energies, MDPI, vol. 5(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4481-4496:d:21410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/11/4481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/11/4481/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Zhao & Hui Li & Mingyu Wang & Yaojun Chen & Shengquan Liu & Dong Yang & Chao Yang & Yaogang Hu & Zhe Chen, 2014. "An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System," Energies, MDPI, vol. 7(5), pages 1-18, May.
    2. Virulkar, V.B. & Gotmare, G.V., 2016. "Sub-synchronous resonance in series compensated wind farm: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1010-1029.
    3. Uvini Perera & Amanullah Maung Than Oo & Ramon Zamora, 2022. "Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects," Energies, MDPI, vol. 15(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4481-4496:d:21410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.