IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8465-d970882.html
   My bibliography  Save this article

Methods of Diagnosing the Insulation of Electric Machines Windings

Author

Listed:
  • Adam Decner

    (Łukasiewicz Research Network—Institute of Electrical Drives and Machines KOMEL, 40-203 Katowice, Poland)

  • Marcin Baranski

    (Łukasiewicz Research Network—Institute of Electrical Drives and Machines KOMEL, 40-203 Katowice, Poland)

  • Tomasz Jarek

    (Łukasiewicz Research Network—Institute of Electrical Drives and Machines KOMEL, 40-203 Katowice, Poland)

  • Sebastian Berhausen

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The presented article concerns issues related to the diagnostics of the technical condition of the insulation of electrical machines. It discusses the importance of the operational supervision, maintenance and diagnostics of electrical machine insulation systems. The structure of the insulation system is presented and known solutions for making winding insulation are described. The negative impact of conditions and various exposures on the technical condition of the insulation system is described. Special attention is focused on the review of available diagnostic methods for insulating systems of electrical machines. These methods have been arranged in a systematic order according to the type of tests to be carried out.

Suggested Citation

  • Adam Decner & Marcin Baranski & Tomasz Jarek & Sebastian Berhausen, 2022. "Methods of Diagnosing the Insulation of Electric Machines Windings," Energies, MDPI, vol. 15(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8465-:d:970882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bishal Silwal & Peter Sergeant, 2018. "Thermally Induced Mechanical Stress in the Stator Windings of Electrical Machines," Energies, MDPI, vol. 11(8), pages 1-18, August.
    2. Danikas, Michael G. & Karlis, Athanasios, 2011. "A review on electrical machines insulation aging and its relation to the power electronics arrangements with emphasis on wind turbine generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1748-1752, May.
    3. Marek Florkowski & Barbara Florkowska & Pawel Zydron, 2019. "Partial Discharges in Insulating Systems of Low Voltage Electric Motors Fed by Power Electronics—Twisted-Pair Samples Evaluation," Energies, MDPI, vol. 12(5), pages 1-19, February.
    4. Arshiah Yusuf Mirza & Ali Bazzi & Hiep Hoang Nguyen & Yang Cao, 2022. "Motor Stator Insulation Stress Due to Multilevel Inverter Voltage Output Levels and Power Quality," Energies, MDPI, vol. 15(11), pages 1-18, June.
    5. Jian Zhang & Rui Wang & Youtong Fang & Yuan Lin, 2022. "Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors," Energies, MDPI, vol. 15(11), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Cizeron & Javier Ojeda & Eric Labouré & Olivier Béthoux, 2019. "Prediction of PWM-Induced Current Ripple in Subdivided Stator Windings Using Admittance Analysis," Energies, MDPI, vol. 12(23), pages 1-19, November.
    2. Diao, Kaikai & Sun, Xiaodong & Bramerdorfer, Gerd & Cai, Yingfeng & Lei, Gang & Chen, Long, 2022. "Design optimization of switched reluctance machines for performance and reliability enhancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Jian Zhang & Yinxun Shao & Yinxin Long & Xiangning He & Kangwen Wu & Lingfeng Cai & Jianwei Wu & Youtong Fang, 2024. "Methods for the Viscous Loss Calculation and Thermal Analysis of Oil-Filled Motors: A Review," Energies, MDPI, vol. 17(18), pages 1-21, September.
    4. Ekström, Rickard & Ekergård, Boel & Leijon, Mats, 2015. "Electrical damping of linear generators for wave energy converters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 116-128.
    5. Bishal Silwal & Abdalla Hussein Mohamed & Jasper Nonneman & Michel De Paepe & Peter Sergeant, 2019. "Assessment of Different Cooling Techniques for Reduced Mechanical Stress in the Windings of Electrical Machines," Energies, MDPI, vol. 12(10), pages 1-18, May.
    6. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Janjanam Naveen & Myneni Sukesh Babu & Ramanujam Sarathi & Ramachandran Velmurugan & Michael G. Danikas & Athanasios Karlis, 2021. "Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites," Energies, MDPI, vol. 14(23), pages 1-17, November.
    8. Sonia Ait-Amar & Abdoulay Koita & Gabriel Vélu, 2022. "Interpretation of Eccentricity of an Enameled Wire by Capacitance Measurements," Energies, MDPI, vol. 15(8), pages 1-9, April.
    9. Vanessa Neves Höpner & Volmir Eugênio Wilhelm, 2021. "Insulation Life Span of Low-Voltage Electric Motors—A Survey," Energies, MDPI, vol. 14(6), pages 1-32, March.
    10. Kang Sun & Jing Zhang & Wenwen Shi & Jingdie Guo, 2019. "Extraction of Partial Discharge Pulses from the Complex Noisy Signals of Power Cables Based on CEEMDAN and Wavelet Packet," Energies, MDPI, vol. 12(17), pages 1-17, August.
    11. Giovana Pereira dos Santos Lima & Sonia Ait-Amar & Gabriel Velu & Philippe Frezel & Abdelhamid Boudiba & Mireille Poelman & Arnaud Nicolay & Pierre-Yves Herze, 2022. "Performance Analysis Based on Thermal Aging Tests of Sol-Gel and Polymer Insulated Wires by Enameling and Extrusion Technology," Energies, MDPI, vol. 15(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8465-:d:970882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.