IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8423-d969200.html
   My bibliography  Save this article

A Fault Diagnosis Method of Rolling Bearing Based on Attention Entropy and Adaptive Deep Kernel Extreme Learning Machine

Author

Listed:
  • Weiyu Wang

    (Wuling Power Corporation Ltd., Changsha 410004, China
    Hydropower Industry Innovation Center of State Power Investment Corporation Limited, Changsha 410004, China)

  • Xunxin Zhao

    (Wuling Power Corporation Ltd., Changsha 410004, China
    Hydropower Industry Innovation Center of State Power Investment Corporation Limited, Changsha 410004, China)

  • Lijun Luo

    (Wuling Power Corporation Ltd., Changsha 410004, China
    Hydropower Industry Innovation Center of State Power Investment Corporation Limited, Changsha 410004, China)

  • Pei Zhang

    (Wuling Power Corporation Ltd., Changsha 410004, China
    Hydropower Industry Innovation Center of State Power Investment Corporation Limited, Changsha 410004, China)

  • Fan Mo

    (Wuling Power Corporation Ltd., Changsha 410004, China
    Hydropower Industry Innovation Center of State Power Investment Corporation Limited, Changsha 410004, China)

  • Fei Chen

    (Department of Power and Electrical Engineering, Northwest A&F University, Xianyang 712100, China)

  • Diyi Chen

    (Department of Power and Electrical Engineering, Northwest A&F University, Xianyang 712100, China)

  • Fengjiao Wu

    (Department of Power and Electrical Engineering, Northwest A&F University, Xianyang 712100, China)

  • Bin Wang

    (Department of Power and Electrical Engineering, Northwest A&F University, Xianyang 712100, China)

Abstract

To address the difficulty of early fault diagnosis of rolling bearings, this paper proposes a rolling bearing diagnosis method by combining the attention entropy and adaptive deep kernel extreme learning machine (ADKELM). Firstly, the wavelet threshold denoising method is employed to eliminate the noise in the vibration signal. Then, the empirical wavelet transform (EWT) is utilized to decompose the denoised signal, and extract the attention entropy of the intrinsic mode function (IMF) as the feature vector. Next, the hyperparameters of the deep kernel extreme learning machine (DKELM) are optimized using the marine predators algorithm (MPA), so as to achieve the adaptive changes in the DKELM parameters. By analyzing the fault diagnosis performances of the ADKELM model with different kernel functions and hidden layers, the optimal ADKELM model is determined. Compared with conventional machine learning models such as extreme learning machine (ELM), back propagation neural network (BPNN) and probabilistic neural network (PNN), the high efficiency of the method proposed in this paper is verified.

Suggested Citation

  • Weiyu Wang & Xunxin Zhao & Lijun Luo & Pei Zhang & Fan Mo & Fei Chen & Diyi Chen & Fengjiao Wu & Bin Wang, 2022. "A Fault Diagnosis Method of Rolling Bearing Based on Attention Entropy and Adaptive Deep Kernel Extreme Learning Machine," Energies, MDPI, vol. 15(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8423-:d:969200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    2. Shifei Ding & Nan Zhang & Xinzheng Xu & Lili Guo & Jian Zhang, 2015. "Deep Extreme Learning Machine and Its Application in EEG Classification," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    2. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    3. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    4. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    5. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    6. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    7. Bao, Zhengyi & Nie, Jiahao & Lin, Huipin & Jiang, Jiahao & He, Zhiwei & Gao, Mingyu, 2023. "A global–local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery," Energy, Elsevier, vol. 282(C).
    8. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    9. Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
    10. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).
    11. Cruz, Yarens J. & Villalonga, Alberto & Castaño, Fernando & Rivas, Marcelino & Haber, Rodolfo E., 2024. "Automated machine learning methodology for optimizing production processes in small and medium-sized enterprises," Operations Research Perspectives, Elsevier, vol. 12(C).
    12. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    13. Li, Da & Zhang, Lei & Zhang, Zhaosheng & Liu, Peng & Deng, Junjun & Wang, Qiushi & Wang, Zhenpo, 2023. "Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality," Energy, Elsevier, vol. 284(C).
    14. Sandi Baressi Šegota & Ivan Lorencin & Nikola Anđelić & Jelena Musulin & Daniel Štifanić & Matko Glučina & Saša Vlahinić & Zlatan Car, 2022. "Applying Regressive Machine Learning Techniques in Determination of COVID-19 Vaccinated Patients’ Influence on the Number of Confirmed and Deceased Patients," Mathematics, MDPI, vol. 10(16), pages 1-24, August.
    15. Chenhao, Sun & Yaoding, Wang & Xiangjun, Zeng & Wen, Wang & Chun, Chen & Yang, Shen & Zhijie, Lian & Quan, Zhou, 2024. "A hybrid spatiotemporal distribution forecast methodology for IES vulnerabilities under uncertain and imprecise space-air-ground monitoring data scenarios," Applied Energy, Elsevier, vol. 373(C).
    16. Jeon, Jihun & Cheon, Hojin & Jung, Byungil & Kim, Hongseok, 2024. "ProADD: Proactive battery anomaly dual detection leveraging denoising convolutional autoencoder and incremental voltage analysis," Applied Energy, Elsevier, vol. 373(C).
    17. Zhang, Xiaoxi & Pan, Yongjun & Zhou, Junxiao & Li, Zhixiong & Liao, Tianjun & Li, Jie, 2024. "Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    19. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Mumin Zhang & Yuzhi Wang & Haochen Zhang & Zhiyun Peng & Junjie Tang, 2023. "A Novel and Robust Wind Speed Prediction Method Based on Spatial Features of Wind Farm Cluster," Mathematics, MDPI, vol. 11(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8423-:d:969200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.