IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8053-d957570.html
   My bibliography  Save this article

Combustion of Emulsions in Internal Combustion Engines and Reduction of Pollutant Emissions in Isolated Electricity Systems

Author

Listed:
  • Fabíola Pereira

    (MIT Portugal Sustainable Energy Systems, Instituto Superior Técnico-Universidade Técnica de Lisboa, IN+ Center for Innovation, Technology and Policy Research, 1049-001 Lisbon, Portugal)

  • Carlos Silva

    (MIT Portugal Sustainable Energy Systems, Instituto Superior Técnico-Universidade Técnica de Lisboa, IN+ Center for Innovation, Technology and Policy Research, 1049-001 Lisbon, Portugal)

Abstract

The aim of this work is the combustion of emulsions in two internal combustion diesel engines, instead of residual fuel oil, to reduce pollutant emissions into the atmosphere and fuel consumption for a cleaner energy transition. A methodology was designed that include the planification and implementation of several experiments in a thermoelectric power plant in Madeira Island, that is part of an isolated electricity production system. In the first place, the planification of experiences was developed and the reference points were created. In this case study, three different operating regimes at the nominal speed of 500 rpm were studied: 7.5 MW, 8.5 MW and 9.5 MW, with a gradual increase of the incorporation of water into the emulsions. A comparative analysis of the potential emulsions in diesel engines, instead of fuel oil, were carried out and two process solutions were created in the 8.5 MW regime with 15% v / v of water and 18% v / v of water. The impact on process parameters and the savings obtained were measured. The best result obtained was the reduction of 56.5% of CO, 96.7% of NO 2 and 4.2% of NOx emissions. The specific fuel consumption savings obtained were 2.7%. In conclusion, the experiments and research developed contributed to a more in-depth knowledge about the potential of emulsions in combustion systems; pollutant emissions were reduced; and we designed a new operation regime for the internal combustion engine that are part of an isolated electricity production system.

Suggested Citation

  • Fabíola Pereira & Carlos Silva, 2022. "Combustion of Emulsions in Internal Combustion Engines and Reduction of Pollutant Emissions in Isolated Electricity Systems," Energies, MDPI, vol. 15(21), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8053-:d:957570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, W.M. & An, H. & Chou, S.K. & Chua, K.J. & Mohan, B. & Sivasankaralingam, V. & Raman, V. & Maghbouli, A. & Li, J., 2013. "Impact of emulsion fuel with nano-organic additives on the performance of diesel engine," Applied Energy, Elsevier, vol. 112(C), pages 1206-1212.
    2. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    3. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    4. Hasannuddin, A.K. & Yahya, W.J. & Sarah, S. & Ithnin, A.M. & Syahrullail, S. & Sugeng, D.A. & Razak, I.F.A. & Abd Fatah, A.Y. & Aqma, W.S. & Rahman, A.H.A. & Ramlan, N.A., 2018. "Performance, emissions and carbon deposit characteristics of diesel engine operating on emulsion fuel," Energy, Elsevier, vol. 142(C), pages 496-506.
    5. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    6. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).
    7. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    8. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    9. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    10. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    11. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    12. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    13. Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
    14. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    15. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    16. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua, 2018. "The Effect of Fuel Injection Equipment of Water-In-Diesel Emulsions on Micro-Explosion Behaviour," Energies, MDPI, vol. 11(7), pages 1-13, June.
    17. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    18. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    19. Khond, Vivek W. & Kriplani, V.M., 2016. "Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1338-1348.
    20. Shaafi, T. & Sairam, K. & Gopinath, A. & Kumaresan, G. & Velraj, R., 2015. "Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 563-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8053-:d:957570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.