IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7861-d951103.html
   My bibliography  Save this article

Active Filtering of Inverter Output Waveforms Based on Orthogonal Space Vector Theory

Author

Listed:
  • Adam Muc

    (Department of Ship Automation, Gdynia Maritime University, Poland Morska St. 83, 81-225 Gdynia, Poland)

  • Jan Iwaszkiewicz

    (Department of Ship Automation, Gdynia Maritime University, Poland Morska St. 83, 81-225 Gdynia, Poland)

Abstract

This paper presents a DC/AC converter consisting of two two-level inverters. The complex converter is built using two standard three-phase inverters: the main inverter (MI) and the auxiliary one (AI). The MI is controlled in a simple way to generate the stepped output voltage and the AI works as an active filter limiting the higher harmonics in the MI output voltage. The filtering process is based on the orthogonal space vector theory. A development and modification of the basic solution are presented here. The output voltage of the MI takes the shape of a stepped voltage comparable to the voltage generated by multilevel inverters. The AI operates as a very effective active power filter (APF) of the MI output voltage. The AI power is significantly lower in comparison to the MI power.

Suggested Citation

  • Adam Muc & Jan Iwaszkiewicz, 2022. "Active Filtering of Inverter Output Waveforms Based on Orthogonal Space Vector Theory," Energies, MDPI, vol. 15(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7861-:d:951103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahid Aziz Khan & Mengqi Wang & Wencong Su & Guanliang Liu & Shivam Chaturvedi, 2022. "Grid-Forming Converters for Stability Issues in Future Power Grids," Energies, MDPI, vol. 15(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Muc & Marcin Morawiec & Filip Wilczyński, 2023. "Steady-State Vibration Level Measurement of the Five-Phase Induction Machine during Third Harmonic Injection or Open-Phase Faults," Energies, MDPI, vol. 16(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Anttila & Jéssica S. Döhler & Janaína G. Oliveira & Cecilia Boström, 2022. "Grid Forming Inverters: A Review of the State of the Art of Key Elements for Microgrid Operation," Energies, MDPI, vol. 15(15), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7861-:d:951103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.