IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7749-d947791.html
   My bibliography  Save this article

Importance of Feedstock in a Small-Scale Agricultural Biogas Plant

Author

Listed:
  • Robert Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland)

  • Agnieszka Wysocka-Czubaszek

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland)

  • Piotr Banaszuk

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland)

Abstract

Although no legal sustainability criteria have been formulated for electricity and heat production from biogas, the sustainability and profitability of large-scale biogas plants which use mainly energy crops is now questioned. Small (farm-size) biogas plants characterized by CHP electrical output in the range between 15 kW el and 99 kW el , operating on agricultural wastes and by-products, seem more suitable; however, the variety of feedstock may be crucial in the proper design and operation of such family biogas plants. This paper aims to present the problems that occurred in small agricultural biogas plants fed with sheep manure (SM), horse manure (HM), and grass-clover silage (GCS). This paper also focuses on analyzing the energy balance and carbon dioxide (CO 2 ) emissions related to four technological solutions (Scenarios 1–4) based on various feedstocks, grinding and feeding systems, and wet/dry fermentation. The biogas plant was originally based on dry fermentation with an organic loading rate ~10.4 kg VS ·m −3 ·d −1 , a hydraulic retention time of 16 days, and temperature of 45 °C in the fermentation chamber. The material was shredded and mixed in a mixing device, then the mixture of manures and silage was introduced to the horizontal fermentation chamber through a system of screw feeders. The biogas and the digestate were collected in a reinforced concrete tank. The biogas was sent to the CHP unit of an installed electrical power of 37 kW el , used to produce electricity and recover the heat generated in this process. Scenario 1 is based on the design assumptions used for the biogas plant construction and start-up phase. Scenario 2 includes a new feeding and grinding system, in Scenario 3 the feedstock is limited to SM and HM and wet fermentation is introduced. In Scenario 4, a dry fermentation of SM, HM, and maize silage (MS) is assumed. Avoided CO 2 emissions through electricity and heat production from biogas were the highest in the case of Scenarios 1 and 4 (262,764 kg CO 2 ·y −1 and 240,992 kg CO 2 ·y −1 ) due to high biogas production, and were the lowest in Scenario 3 (7,481,977 kg CO 2 ·y −1 ) because of the low specific methane yield (SMY) of SM and HM. Nevertheless, in all scenarios, except Scenario 3, CO 2 emissions from feedstock preparation and biogas plant operation are much lower than that which can be avoided by replacing the fossil fuel energy for the electricity and heat produced from biogas. Our observations show that a small agricultural biogas plant can be an effective energy source, and can contribute to reducing CO 2 emissions only if the appropriate technological assumptions are adopted, and the entire installation is designed correctly.

Suggested Citation

  • Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2022. "Importance of Feedstock in a Small-Scale Agricultural Biogas Plant," Energies, MDPI, vol. 15(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7749-:d:947791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Calbry-Muzyka, Adelaide & Madi, Hossein & Rüsch-Pfund, Florian & Gandiglio, Marta & Biollaz, Serge, 2022. "Biogas composition from agricultural sources and organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 181(C), pages 1000-1007.
    3. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    4. Alessandro Agostini & Ferdinando Battini & Jacopo Giuntoli & Vincenzo Tabaglio & Monica Padella & David Baxter & Luisa Marelli & Stefano Amaducci, 2015. "Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops," Energies, MDPI, vol. 8(6), pages 1-32, June.
    5. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    7. O'Connor, S. & Ehimen, E. & Pillai, S.C. & Black, A. & Tormey, D. & Bartlett, J., 2021. "Biogas production from small-scale anaerobic digestion plants on European farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    9. John P. Chastain, 2022. "Composition of Equine Manure as Influenced by Stall Management," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    10. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Hengeveld, E.J. & Bekkering, J. & Van Dael, M. & van Gemert, W.J.T. & Broekhuis, A.A., 2020. "Potential advantages in heat and power production when biogas is collected from several digesters using dedicated pipelines - A case study in the “Province of West-Flanders” (Belgium)," Renewable Energy, Elsevier, vol. 149(C), pages 549-564.
    12. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    13. Zhang, Yizhen & Jiang, Yan & Wang, Shun & Wang, Zhongzhong & Liu, Yanchen & Hu, Zhenhu & Zhan, Xinmin, 2021. "Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    3. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    8. Tafadzwa Clementine Maramura & Eugine Tafadzwa Maziriri & Tinashe Chuchu & David Mago & Rumbidzai Mazivisa, 2020. "Renewable Energy Access Challenge at Household Level for the Poor in Rural Zimbabwe: Is Biogas Energy a Remedy?," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 282-292.
    9. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    11. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Yu, Xinhui & Yan, Lei & Wang, Haipeng & Bi, Shaojie & Zhang, Futao & Huang, Sisi & Wang, Yanhong & Wang, Yanjie, 2024. "Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time," Renewable Energy, Elsevier, vol. 221(C).
    13. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    14. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    15. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    16. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    17. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    18. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    20. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7749-:d:947791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.