IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7686-d946312.html
   My bibliography  Save this article

Feasibility of Waste Engine Oil Electrooxidation with Ni-Co and Cu-B Catalysts

Author

Listed:
  • Paweł P. Włodarczyk

    (Institute of Environmental Engineering and Biotechnology, University of Opole, ul. Kominka 6a, 45-032 Opole, Poland)

  • Barbara Włodarczyk

    (Institute of Environmental Engineering and Biotechnology, University of Opole, ul. Kominka 6a, 45-032 Opole, Poland)

Abstract

To implement a circular economy policy, methods of using waste products as a starting point for other technologies are constantly researched. One of the waste products that should be disposed of after use is waste engine oil (WEO). Despite the permanent introduction of the electrification of cars, the number of combustion vehicles (and, thus, the production of WEO) is constantly increasing. For these reasons, the reuse of WEOs is extremely important; e.g., to use these oils for energy purposes. One of the potential uses of this type of oil is as fuel for fuel cells (for direct electricity production). To lower the production costs of electrodes for fuel cells, catalysts that do not contain precious metals are being constantly sought. This work shows the research of WEO electrooxidation feasibility with Ni-Co and Cu-B catalysts. The results showed the feasibility of the electrooxidation of WEO emulsion on Ni-Co and Cu-B electrodes in an electrolyte (a water solution of sulfuric acid). Moreover, it was shown that the electrooxidation of the WEO emulsion occurred for all concentrations of WEO in the emulsion for all measurement temperatures (20–80 °C). The highest current density obtained in the measurements was 11 mA cm −2 (at 60 °C) for the Ni-Co electrode.

Suggested Citation

  • Paweł P. Włodarczyk & Barbara Włodarczyk, 2022. "Feasibility of Waste Engine Oil Electrooxidation with Ni-Co and Cu-B Catalysts," Energies, MDPI, vol. 15(20), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7686-:d:946312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ihsan Hamawand & Talal Yusaf & Sardasht Rafat, 2013. "Recycling of Waste Engine Oils Using a New Washing Agent," Energies, MDPI, vol. 6(2), pages 1-27, February.
    2. Arpa, Orhan & Yumrutas, Recep & Demirbas, Ayhan, 2010. "Production of diesel-like fuel from waste engine oil by pyrolitic distillation," Applied Energy, Elsevier, vol. 87(1), pages 122-127, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł P. Włodarczyk & Barbara Włodarczyk, 2021. "Applicability of Waste Engine Oil for the Direct Production of Electricity," Energies, MDPI, vol. 14(4), pages 1-11, February.
    2. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    3. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    4. Abdelmadjid Mahfoudh BENDJERAD & Nawel CHEIKH & Houcine BENMEHDI & Nicolas MONTRELAY & Koffi Justin HOUESSOU & Xavier PIERENS & Karim BEN-HABIB & Adeline GOULLIEUX & Rose Marie DHEILLY, 2022. "Valorization of Used Lubricating Oils as a Possible Base Oil Source to Avoid Groundwater Pollution in the South of Algeria," Energies, MDPI, vol. 16(1), pages 1-17, December.
    5. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    7. Jialin Gao & Bo Li & Yonggang Wei & Shiwei Zhou & Hua Wang, 2023. "Cracking of Waste Engine Oil in the Presence of Fe 3 O 4," Energies, MDPI, vol. 16(2), pages 1-14, January.
    8. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    9. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    10. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    11. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    12. Bülent Özdalyan & Recep Ç. Orman, 2018. "Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive," Energies, MDPI, vol. 11(6), pages 1-12, June.
    13. Suiuay, Chokchai & Katekaew, Somporn & Senawong, Kritsadang & Junsiri, Chaiyan & Srichat, Aphichat & Laloon, Kittipong, 2023. "Production of gasoline and diesel-like fuel from natural rubber scrap: Upgrading of the liquid fuel properties and performance in a spark ignition engine," Energy, Elsevier, vol. 283(C).
    14. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    15. Su Shiung Lam & Howard A. Chase, 2012. "A Review on Waste to Energy Processes Using Microwave Pyrolysis," Energies, MDPI, vol. 5(10), pages 1-24, October.
    16. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Assessment of liquid fuel (bio-oil) production from waste fish fat and utilization in diesel engine," Applied Energy, Elsevier, vol. 100(C), pages 249-257.
    17. Mishra, Asmita & Siddiqi, Hammad & Kumari, Usha & Behera, Ipsita Dipamitra & Mukherjee, Subhrajit & Meikap, B.C., 2021. "Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    19. Mansour Fakhri & Danial Arzjani & Pooyan Ayar & Maede Mottaghi & Nima Arzjani, 2021. "Performance Evaluation of WMA Containing Re-Refined Acidic Sludge and Amorphous Poly Alpha Olefin (APAO)," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    20. Mrad, Nadia & Varuvel, Edwin Geo & Tazerout, Mohand & Aloui, Fethi, 2012. "Effects of biofuel from fish oil industrial residue – Diesel blends in diesel engine," Energy, Elsevier, vol. 44(1), pages 955-963.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7686-:d:946312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.