IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3315-d518893.html
   My bibliography  Save this article

Performance Evaluation of WMA Containing Re-Refined Acidic Sludge and Amorphous Poly Alpha Olefin (APAO)

Author

Listed:
  • Mansour Fakhri

    (Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 1996715433, Iran)

  • Danial Arzjani

    (Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 1996715433, Iran)

  • Pooyan Ayar

    (Department of Highway and Transportation Engineering, School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran 1684613114, Iran)

  • Maede Mottaghi

    (Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 1996715433, Iran)

  • Nima Arzjani

    (Department of Transportation Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran)

Abstract

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.

Suggested Citation

  • Mansour Fakhri & Danial Arzjani & Pooyan Ayar & Maede Mottaghi & Nima Arzjani, 2021. "Performance Evaluation of WMA Containing Re-Refined Acidic Sludge and Amorphous Poly Alpha Olefin (APAO)," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3315-:d:518893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ihsan Hamawand & Talal Yusaf & Sardasht Rafat, 2013. "Recycling of Waste Engine Oils Using a New Washing Agent," Energies, MDPI, vol. 6(2), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Movilla-Quesada & Aitor C. Raposeiras & Edgardo Guíñez & Almudena Frechilla-Alonso, 2023. "A Comparative Study of the Effect of Moisture Susceptibility on Polyethylene Terephthalate–Modified Asphalt Mixes under Different Regulatory Procedures," Sustainability, MDPI, vol. 15(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    2. Abdelmadjid Mahfoudh BENDJERAD & Nawel CHEIKH & Houcine BENMEHDI & Nicolas MONTRELAY & Koffi Justin HOUESSOU & Xavier PIERENS & Karim BEN-HABIB & Adeline GOULLIEUX & Rose Marie DHEILLY, 2022. "Valorization of Used Lubricating Oils as a Possible Base Oil Source to Avoid Groundwater Pollution in the South of Algeria," Energies, MDPI, vol. 16(1), pages 1-17, December.
    3. Jialin Gao & Bo Li & Yonggang Wei & Shiwei Zhou & Hua Wang, 2023. "Cracking of Waste Engine Oil in the Presence of Fe 3 O 4," Energies, MDPI, vol. 16(2), pages 1-14, January.
    4. Paweł P. Włodarczyk & Barbara Włodarczyk, 2021. "Applicability of Waste Engine Oil for the Direct Production of Electricity," Energies, MDPI, vol. 14(4), pages 1-11, February.
    5. Paweł P. Włodarczyk & Barbara Włodarczyk, 2022. "Feasibility of Waste Engine Oil Electrooxidation with Ni-Co and Cu-B Catalysts," Energies, MDPI, vol. 15(20), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3315-:d:518893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.