IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7577-d941976.html
   My bibliography  Save this article

A Thermal Model to Estimate PV Electrical Power and Temperature Profile along Panel Thickness

Author

Listed:
  • Francesco Nicoletti

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

  • Mario Antonio Cucumo

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

  • Vittorio Ferraro

    (Computer, Modelling, Electronics and System Engineering Department, University of Calabria, 87036 Rende, Italy)

  • Dimitrios Kaliakatsos

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

  • Albino Gigliotti

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

Abstract

The production of electricity from photovoltaic panels has experienced significant developments. To manage the energy flows introduced into the electricity grid, it is necessary to estimate the productivity of PV panels under the climatic conditions. In this study, a photovoltaic panel is modelled from thermal and electrical points of view to evaluate electrical performance and identify the temperature distribution in the layers. The analysis performed is time dependent and the problem is solved using the finite difference technique. A methodology is introduced to estimate the cloudiness of the sky, which affects radiative heat exchange. The calculation method is validated using experimental data recorded in a laboratory of the University of Calabria. Temperature and electrical power are predicted with RMSE of 1.5–2.0 °C and NRMSE of 1.2–2.1%, respectively. The evaluation of the temperature profile inside the panel is essential to understand how heat is dissipated. The results show that the top surface (glass) is almost always colder than the back of the panel, despite being exposed to radiation. In addition, the upper surface dissipates more heat power than the lower one. Cooling systems, such as spray cooling, work better if they are installed on the back of the panel.

Suggested Citation

  • Francesco Nicoletti & Mario Antonio Cucumo & Vittorio Ferraro & Dimitrios Kaliakatsos & Albino Gigliotti, 2022. "A Thermal Model to Estimate PV Electrical Power and Temperature Profile along Panel Thickness," Energies, MDPI, vol. 15(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7577-:d:941976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    2. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    3. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    4. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    5. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    2. Stefania Perrella & Roberto Bruno & Piero Bevilacqua & Daniela Cirone & Natale Arcuri, 2023. "Energy Evaluations of a New Plant Configuration for Solar-Assisted Heat Pumps in Cold Climates," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    3. Bevilacqua, Piero & Perrella, Stefania & Bruno, Roberto & Arcuri, Natale, 2021. "An accurate thermal model for the PV electric generation prediction: long-term validation in different climatic conditions," Renewable Energy, Elsevier, vol. 163(C), pages 1092-1112.
    4. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    5. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    6. Meng, Zhuo & Zhao, Yiman & Tang, Shiqing & Sun, Yize, 2020. "An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model," Renewable Energy, Elsevier, vol. 153(C), pages 1174-1182.
    7. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    8. Vorachack Kongphet & Anne Migan-Dubois & Claude Delpha & Jean-Yves Lechenadec & Demba Diallo, 2022. "Low-Cost I–V Tracer for PV Fault Diagnosis Using Single-Diode Model Parameters and I–V Curve Characteristics," Energies, MDPI, vol. 15(15), pages 1-31, July.
    9. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    10. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    11. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    12. Amirhossein Fathi & Masoomeh Bararzadeh Ledari & Yadollah Saboohi, 2021. "Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    13. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    14. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    15. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa & Alfredo Pudano, 2020. "Economic Comparison Between a Stand-Alone and a Grid Connected PV System vs. Grid Distance," Energies, MDPI, vol. 13(15), pages 1-22, July.
    16. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    17. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    18. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    19. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    20. Klamka, Jonas & Wolf, André & Ehrlich, Lars G., 2020. "Photovoltaic self-consumption after the support period: Will it pay off in a cross-sector perspective?," Renewable Energy, Elsevier, vol. 147(P1), pages 2374-2386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7577-:d:941976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.