IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7391-d936698.html
   My bibliography  Save this article

Micro-Channel Oscillating Heat Pipe Energy Conversion Approach of Battery Heat Dissipation Improvement: A Review

Author

Listed:
  • Xiaohuan Zhao

    (Energy and Electricity Research Center, International Energy College, Zhuhai Campus, Jinan University, No. 206, Qianshan Road, Xiangzhou District, Zhuhai 519070, China)

  • Yue Zhu

    (Energy and Electricity Research Center, International Energy College, Zhuhai Campus, Jinan University, No. 206, Qianshan Road, Xiangzhou District, Zhuhai 519070, China)

  • Hailiang Li

    (Energy and Electricity Research Center, International Energy College, Zhuhai Campus, Jinan University, No. 206, Qianshan Road, Xiangzhou District, Zhuhai 519070, China)

Abstract

The application of batteries has become more and more extensive, and the heat dissipation problem cannot be ignored. Oscillating Heat Pipe (OHP) is a good means of heat dissipation. In this paper, the methods to improve the energy conversion and flow thermal performance of micro-channel OHP are studied and summarized. The working principle, heat transfer mechanism, advantages and applications of PHP are also introduced in detail in this study. Proper adjustment of the micro-channel layout can increase the heat transfer limit of PHP by 44%. The thermal resistance of two-diameter channel PHP is 45% lower than that of conventional PHP. The thermal resistance of PHP under uneven heating can be reduced to 50% of the original. PHP pulse heating can alleviate the phenomenon of dryness. Different working fluids have different effects on PHP. The use of graphene nano-fluids as the work medium can reduce the thermal resistance of PHP by 83.6%. The work medium obtained by the mixture of different fluids has the potential to compensate for the defects while inheriting the advantages of a single fluid.

Suggested Citation

  • Xiaohuan Zhao & Yue Zhu & Hailiang Li, 2022. "Micro-Channel Oscillating Heat Pipe Energy Conversion Approach of Battery Heat Dissipation Improvement: A Review," Energies, MDPI, vol. 15(19), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7391-:d:936698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    2. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    3. Ling, Yun-Zhi & Zhang, Xiao-Song & Wang, Feng & She, Xiao-Hui, 2020. "Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling," Renewable Energy, Elsevier, vol. 154(C), pages 636-649.
    4. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2016. "Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials," Applied Energy, Elsevier, vol. 182(C), pages 475-487.
    5. Nine, Md J. & Tanshen, Md. Riyad & Munkhbayar, B. & Chung, Hanshik & Jeong, Hyomin, 2014. "Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe," Energy, Elsevier, vol. 70(C), pages 135-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaveh Sadeghi & Mostafa Kahani & Mohammad Hossein Ahmadi & Mohammad Zamen, 2022. "CFD Modelling and Visual Analysis of Heat Transfer and Flow Pattern in a Vertical Two-Phase Closed Thermosyphon for Moderate-Temperature Application," Energies, MDPI, vol. 15(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    4. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    5. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    6. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    7. Gu, Xiaobin & Liu, Peng & Bian, Liang & He, Huichao, 2019. "Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 833-841.
    8. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    9. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    11. Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
    12. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    13. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    14. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    15. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Jose Loyola-Fuentes & Luca Pietrasanta & Marco Marengo & Francesco Coletti, 2022. "Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes," Energies, MDPI, vol. 15(6), pages 1-20, March.
    17. Spinato, Giulia & Borhani, Navid & Thome, John R., 2015. "Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe," Energy, Elsevier, vol. 90(P1), pages 889-899.
    18. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    19. Zhang, Ting & Zhang, Tuodi & Zhang, Jing & Zhang, Deyi & Guo, Pengran & Li, Hongxia & Li, Chunlei & Wang, Yi, 2021. "Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties," Renewable Energy, Elsevier, vol. 165(P1), pages 504-513.
    20. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7391-:d:936698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.